Integrated Concepts A 2.50-kg fireworks shell is fired straight up from a mortar and reaches a height of 110 m. (a) Neglecting air resistance (a poor assumption, but we will make it for this example), calculate the shell's velocity when it leaves the mortar. (b) The mortar itself is a tube 0.450 m long. Calculate the average acceleration of the shell in the tube as it goes from zero to the velocity found in (a). (c) What is the average force on the shell in the mortar? Express your answer in newtons and as a ratio to the weight of the shell.
Trending nowThis is a popular solution!
Chapter 4 Solutions
College Physics
Additional Science Textbook Solutions
Conceptual Physics (12th Edition)
University Physics Volume 1
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (4th Edition)
Sears And Zemansky's University Physics With Modern Physics
University Physics Volume 2
Essential University Physics: Volume 2 (3rd Edition)
- The CERN particle accelerator is circular with a circumference of 7.0 km. (a) What is the acceleration of the protons (m=1.671027kg)that move around the accelerator at 5of the speed of light? (The speed of light is v=3.00108m/s .) (b) What is the force on the protons?arrow_forwardA projectile is launched on the Earth with a certain initial velocity and moves without air resistance. Another projectile is launched with the same initial velocity on the Moon, where the acceleration due to gravity is one-sixth as large. How does the maximum altitude of the projectile on the Moon compare with that of the projectile on the Earth? (a) It is one-sixth as large. (b) It is the same. (c) It is 6 times larger. (d) It is 6 times larger. (e) It is 36 times larger.arrow_forwardA steel ball is dropped onto a hard floor from a height of 1.50 m and rebounds to a height of 1.45 m. (a) Calculate its velocity just before it strikes the floor. (b) Calculate its velocity just after it leaves the floor on its way back up. (c) Calculate its acceleration during contact with the floor if that contact lasts 0.0800ms(8.0010-5s) (d) How much did the ball compress during its collision with the floor, assuming the floor is absolutely rigid?arrow_forward
- In a later chapter, you will find that the weight of a particle varies with altitude such that w=mgr02r2where r0is the radius of Earth and ris the distance from Earth’s center. If the particle is fired vertically with velocity v0from Earth’s surface, determine its velocity as a function of position r. (Hint: use adr=vdv, the rearrangement mentioned in the text.)arrow_forwardA soft tennis ball is dropped onto a hard floor from a height of 1.50 m and rebounds to a height of 1.10 m. (a) Calculate its velocity just before it strikes the floor. (b) Calculate its velocity just after It leaves the floor on its way back up. (c) Calculate its acceleration during contact with the floor if that contact lasts 3.50 ms (3.50103s) (d) How much did the ball compress during its collision with the floor, assuming the floor is absolutely rigid?arrow_forwardSolve asaparrow_forward
- A 1.10-kg object slides to the right on a surface having a coefficient of kinetic friction 0.250 (Figure a). The object has a speed of vi = 2.60 m/s when it makes contact with a light spring (Figure b) that has a force constant of 50.0 N/m. The object comes to rest after the spring has been compressed a distance d (Figure c). The object is then forced toward the left by the spring (Figure d) and continues to move in that direction beyond the spring's unstretched position. Finally, the object comes to rest a distance D to the left of the unstretched spring (Figure e). C e m V=0 DWWW karrow_forwardIntegrated Concepts A basketball player jumps straight up for a ball. To do this, he lowers his body 0.300 m and then accelerates through this distance by forcefully straightening his legs. This player leaves the floor with a vertical velocity sufficient to carry him 0.900 m above the floor. (a) Calculate his velocity when he leaves the floor. (b) Calculate his acceleration while he is straightening his legs. He goes from zero to the velocity found in part (a) in a distance of 0.300 m. (c) Calculate the force he exerts on the floor to do this, given that his mass is 110 kg.arrow_forwardA fountain shoots water from a nozzle with initial velocity of 3.13 m/s at 30.0° above the horizontal. How long does it take for the water to reach the maximum height df its trajectory if air resistance is negligibly small and g = 9.80 m/s2? a) 00.160 s b) 00.282 s Answ c) O 0.313 s d) O 0.320 s Review Laterarrow_forward
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College