Physics for Scientists and Engineers: Foundations and Connections
1st Edition
ISBN: 9781133939146
Author: Katz, Debora M.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 8, Problem 56PQ
(a)
To determine
The minimum mechanical energy required for the two protons to fuse.
(b)
To determine
The minimum distance between the protons of a two-proton system in Sun.
(c)
To determine
The reason why it seems impossible for fusion to take place in the Sun.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The nuclear reaction that powers the radioisotope thermoelectric generator is
2382Pu → 23U + He. The atomic masses of plutonium-238 and uranium-234 are
238.049554 amu and 234.040946 amu, respectively. The mass of an alpha particle is
4.001506 amu. How much energy in kJ is released when 1.00 g of plutonium-238
decays to uranium-234?
The sun produces energy by nuclear fusion reactions, in which matter is converted into energy. By measuring the amount of energy we receive from the sun, we know that it is producing energy at a rate of 3.8 x 1026 W. (a) How many kilograms of matter does the sun lose each second? Approximately how many tons of matter is this (1 ton = 2000 lb)? (b) At this rate, how long would it take the sun to use up all its mass?
A unique star produces energy by nuclear fusion reactions, in which matter is converted into energy. By measuring the amount of energy we receive from that star, we know that it is producing energy at a rate of 4.8 x 10 26 How many kilograms of matter does this star lose each second?
Chapter 8 Solutions
Physics for Scientists and Engineers: Foundations and Connections
Ch. 8.1 - Comet Halleys Orbital Parameters Figure 8.1 shows...Ch. 8.2 - Prob. 8.2CECh. 8.2 - Prob. 8.3CECh. 8.3 - In Figure 8.11, a person launches a ball off of a...Ch. 8 - Case Study From Figure 8.1B for Comet Halley, is...Ch. 8 - Estimate the kinetic energy of the following: a....Ch. 8 - Prob. 3PQCh. 8 - Prob. 4PQCh. 8 - A 0.430-kg soccer ball is kicked at an initial...Ch. 8 - Prob. 6PQ
Ch. 8 - According to a scaled woman, a 67.7-kg man runs...Ch. 8 - Prob. 8PQCh. 8 - Prob. 9PQCh. 8 - Prob. 10PQCh. 8 - Prob. 11PQCh. 8 - Prob. 12PQCh. 8 - Prob. 13PQCh. 8 - In each situation shown in Figure P8.12, a ball...Ch. 8 - Prob. 15PQCh. 8 - Prob. 16PQCh. 8 - Prob. 17PQCh. 8 - Prob. 18PQCh. 8 - A ball of mass 0.40 kg hangs straight down on a...Ch. 8 - Prob. 20PQCh. 8 - Prob. 21PQCh. 8 - Prob. 22PQCh. 8 - One type of toy car contains a spring that is...Ch. 8 - A block is placed on top of a vertical spring, and...Ch. 8 - Rubber tends to be nonlinear as an elastic...Ch. 8 - A block is hung from a vertical spring. The spring...Ch. 8 - A spring of spring constant k lies along an...Ch. 8 - A block on a frictionless, horizontal surface is...Ch. 8 - A falcon is soaring over a prairie, flying at a...Ch. 8 - A stellar black hole may form when a massive star...Ch. 8 - A newly established colony on the Moon launches a...Ch. 8 - The Flybar high-tech pogo stick is advertised as...Ch. 8 - An uncrewed mission to the nearest star, Proxima...Ch. 8 - A small ball is tied to a string and hung as shown...Ch. 8 - Prob. 35PQCh. 8 - Prob. 36PQCh. 8 - Prob. 37PQCh. 8 - Prob. 38PQCh. 8 - Figure P8.39 shows two bar charts. In each, the...Ch. 8 - Prob. 40PQCh. 8 - If a spacecraft is launched from the Moon at the...Ch. 8 - A 1.50-kg box rests atop a massless vertical...Ch. 8 - A man unloads a 5.0-kg box from a moving van by...Ch. 8 - Starting at rest, Tina slides down a frictionless...Ch. 8 - Prob. 45PQCh. 8 - Karen and Randy are playing with a toy car and...Ch. 8 - An intrepid physics student decides to try bungee...Ch. 8 - A block of mass m = 1.50 kg attached to a...Ch. 8 - Prob. 49PQCh. 8 - A jack-in-the-box is actually a system that...Ch. 8 - A side view of a half-pipe at a skateboard park is...Ch. 8 - Prob. 52PQCh. 8 - Prob. 53PQCh. 8 - Prob. 54PQCh. 8 - A particle moves in one dimension under the action...Ch. 8 - Prob. 56PQCh. 8 - Prob. 57PQCh. 8 - Prob. 58PQCh. 8 - Prob. 59PQCh. 8 - Much of the mass of our Milky Way galaxy is...Ch. 8 - A stellar black hole may form when a massive star...Ch. 8 - Prob. 62PQCh. 8 - Prob. 63PQCh. 8 - FIGURE 8.38 Comparison of a circular and an...Ch. 8 - A 50.0-g toy car is released from rest on a...Ch. 8 - Prob. 66PQCh. 8 - The Earths perihelion distance (closest approach...Ch. 8 - After ripping the padding off a chair you are...Ch. 8 - A In a classic laboratory experiment, a cart of...Ch. 8 - A block is attached to a spring, and the block...Ch. 8 - At the start of a basketball game, a referee...Ch. 8 - At the start of a basketball game, a referee...Ch. 8 - Prob. 73PQCh. 8 - Prob. 74PQCh. 8 - At 220 m, the bungee jump at the Verzasca Dam in...Ch. 8 - Prob. 76PQCh. 8 - A block of mass m1 = 4.00 kg initially at rest on...Ch. 8 - A Eric is twirling a ball of mass m = 0.150 kg...Ch. 8 - Prob. 79PQCh. 8 - Prob. 80PQCh. 8 - Prob. 81PQCh. 8 - Prob. 82PQCh. 8 - Prob. 83PQCh. 8 - Prob. 84PQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The sun produces energy by nuclear fusion reactions, in which matter is converted into energy. By measuring the amount of energy we receive from the sun, we know that it is producing energy at a rate of 3.8 * 1026 W. (a) How many kilograms of matter does the sun lose each second? Approximately how many tons of matter is this (1 ton = 2000 lb)? (b) At this rate, how long would it take the sun to use up all its mass?arrow_forwardThe Sun emits energy in the form of light at a rate of approximately 1026 w. This light originates from fusion reactions, which occur primarily in the core of the Sun, where the pressure and temperature are highest. Products from these fusion reactions differ in mass from the reactants by approximately 1%. Astronomers estimate that the Sun will run out of fuel in the core after approximately 1010 years. The mass of the Sun is approximately 1030 kg, but only the portion of the mass that is in its core can undergo fusion. Which of the following represents the approximate fraction of the Sun's mass in its core? Assume that there are 10' seconds in a year. (A) 0.1% 1% (C 10% 100%arrow_forwardUranium-238 decays via the alpha decay process. Part (a) Calculate the energy released in units of megaelectron volts when a uranium-238 nucleus undergoes alpha decay. Part (b) What fraction of the mass of a single uranium-238 nucleus is destroyed in the decay? Part (c) Why is difficult to observe the change in mass for a macroscopic sample of uranium-238?arrow_forward
- When antimatter interacts with an equal mass of ordinary matter, both matter and antimatter are converted completely into energy, in the form of photons. In an antimatter-fueled spaceship, a staple of science fiction, the newly created photons are shot from the back of the ship, propelling it forward. Suppose such a ship has a mass of 2.00×10^6kg, and carries a mass of fuel equal to 4 % of its mass, or4.00×10^4kg of matter and an equal mass of antimatter. What is the final speed of the ship, assuming it starts from rest, if all energy released in the matter-antimatter annihilation is transformed into the kinetic energy of the ship?arrow_forwardA rocket is traveling through space and its Lorentz factor (y) is 3.9. Determine the rocket's speed (in terms of c) and the ratio of its kinetic energy to its total energy. V= ? X c KE/E= ?arrow_forwardThe velocity of an alpha particle, He2+, with a mass of 6.64×10−27kg changes from v1=(−0.30, 0.45,0.10)c to v2=(−0.50, 0.30, −0.75)c, where c=3×108m/s. Determine the change in the particle’s kinetic energy.(In the kinetic energy formula, do not forget to square the speed of light.)arrow_forward
- The carbon isotope 14C is used for carbon dating of objects. A 14C nucleus can change into a different kind of element, a neighbor on the periodic table with lower mass, by emitting a beta particle – an electron or positron – plus a neutrino or an anti-neutrino. Consider the scenario where 14C ( mass of 2.34 x 10 -26) decays by emitting an electron and anti neutrino. The electron has a mass of 9.11x 10-31 kg and a speed of 1.0 x107 m/s. While the anti neutrino has a momentum of 1.0x10-24 kg-m/s. If the electron and anti neutrino are emitted at right angles from each other, calculate the recoil speed of the nucleus.arrow_forwardWhat is the total energy of a proton moving at a speed of 2.4 × 108 m/s? (proton mass is 1.67 × 10−27 kg and c = 3.00 × 108 m/s)arrow_forwardThe Sun produces energy at a rate of 4.00 x 1026 W by the fusion of hydrogen. How many kilograms of mass is the Sun losing per second?arrow_forward
- The radioactive element radium (Ra) decays by a process known as alpha decay, in which the nucleus emits a helium nucleus. (These high-speed helium nuclei were named alpha particles when radioactivity was first discovered, long before the identity of the particles was established.) The reaction is 226Ra → 222Rn + 4He, where Rn is the element radon. The accurately measured atomic masses of the three atoms are 226.025, 222.017, and 4.003. How much energy is released in each decay? (The energy released in radioactive decay is what makes nuclear waste “hot.”)arrow_forwardThe kinetic energy (T) of an object with mass m traveling at a speed v is defined as T = \frac{1}{2}mv^2T=21mv2. What is the kinetic energy (in J) of an object of mass 41 g traveling a velocity of 37 miles per hour? (1 mile = 1.609 km) Round your answer to the tenths (0.1) place.arrow_forwardHow much energy would be required to break a helium nucleus into its constituents, two protons and two neutrons? The masses of a proton (including an electron), a neutron, and neutral helium are, respectively, 1.00783 u, 1.00867 u, and 4.00260 u. (This energy difference is called the total binding energy of the He nucleus.)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Kinetic Energy and Potential Energy; Author: Professor Dave explains;https://www.youtube.com/watch?v=g7u6pIfUVy4;License: Standard YouTube License, CC-BY