(2) A standard vapor compression system produces 20 tons of refrigeration using R-12 as a refrigerant while operating between a condenser temperature of 41.6 C and an evaporator temperature of -25°C. Determine (a) the refrigerating effect in kJ/kg, (b) the circulating rate in kg/s, (c) the power supplied, (d) the COP, (e) the heat rejected in kW, and (f) the volume flow rate in L/s.

Refrigeration and Air Conditioning Technology (MindTap Course List)
8th Edition
ISBN:9781305578296
Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Chapter47: High-pressure, Low-pressure, And Absorption Chilled-water Systems
Section: Chapter Questions
Problem 13RQ: The subcooling temperature in a condenser can be measured by taking the difference between the A....
icon
Related questions
Question

provide solutions using the ASHRAE tables and charts
Answer only the d, e and f

(2) A standard vapor compression system produces 20 tons
of refrigeration using R-12 as a refrigerant while operating
between a condenser temperature of 41.6 C and an evaporator
temperature of -25°C. Determine (a) the refrigerating effect in
kJ/kg, (b) the circulating rate in kg/s, (c) the power supplied,
(d) the COP, (e) the heat rejected in kW, and (f) the volume flow
rate in L/s.
Ans. (a) 100.26 kJ/kg, (b) 0.7022 kg/s, (c) 25.69 kW,
(d) 2.74, (e) 96.09 kW, (f) 92.18 L/s
Transcribed Image Text:(2) A standard vapor compression system produces 20 tons of refrigeration using R-12 as a refrigerant while operating between a condenser temperature of 41.6 C and an evaporator temperature of -25°C. Determine (a) the refrigerating effect in kJ/kg, (b) the circulating rate in kg/s, (c) the power supplied, (d) the COP, (e) the heat rejected in kW, and (f) the volume flow rate in L/s. Ans. (a) 100.26 kJ/kg, (b) 0.7022 kg/s, (c) 25.69 kW, (d) 2.74, (e) 96.09 kW, (f) 92.18 L/s
Expert Solution
steps

Step by step

Solved in 5 steps with 1 images

Blurred answer
Knowledge Booster
Refrigeration and Air Conditioning
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Refrigeration and Air Conditioning Technology (Mi…
Refrigeration and Air Conditioning Technology (Mi…
Mechanical Engineering
ISBN:
9781305578296
Author:
John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:
Cengage Learning
Principles of Heat Transfer (Activate Learning wi…
Principles of Heat Transfer (Activate Learning wi…
Mechanical Engineering
ISBN:
9781305387102
Author:
Kreith, Frank; Manglik, Raj M.
Publisher:
Cengage Learning