A circular foundation 2m in diameter is shown in the figure below. A normally consolidated clay layer 5m thick is located below the foundation. Determine the consolidation settlement of the clay. method 2:1 (1) As one layer of clay of 5m thick: - Divide the clay layer into (5) sub-layers each of 1m thick: (2) Calculation of increase of stress below the center of each sub-layer Aoo(): (3) Weighted average pressure increase (Simpson's rule): Circular foundation diameter B = 2m G.S. 1.0m Sand q = 150 kN/m y = 17 kNhm² 0.5m W.T. Sand 19 kNiw! 0.5m Normally consolidated clay Y sat. = 18.5 kN/m² C_ =0.16, e, =0.85 5.0m %3D Solution :

Principles of Foundation Engineering (MindTap Course List)
8th Edition
ISBN:9781305081550
Author:Braja M. Das
Publisher:Braja M. Das
Chapter2: Geotechnical Properties Of Soil
Section: Chapter Questions
Problem 2.14P
icon
Related questions
Question

"please resolve the question but using method 2:1"

note / the value load (q) is KN/mis stree not load

method 2:1 q/(B+z) why the q * area

b is circular

"note in the picture solve the question but please solve in method 2:1"

• Calculation of increase of stress below the center of each sub-layer Aoi):
1
For 1“. Layer. Aoq) =150'1--
|
= 63.59 kN/m²
[(1/1.5)² + 13/2
1
For 2nd. Layer: Ao 2) =1
= 29.93 kN/m²
[(1/2.5)² + 1]3/2
1
For 3rd Layer: Ao) =150{1.
=16.66 kN/m²
[(1/3.5)² +1]3/2
1
For 4. Layer: Ao(4) =150
- =10.46 kN/m²
[(1/4.5)² +1]3/2
1
For 5th. Layer: Ao(5) =150
= 7.14 kN/m²
[(1/5.5)² +1]3/2
Ae 6)
AH;
Ae (1)
- AH;
1+e,
Layer no.
kN/m2
kN/m²
m
35.44
43.13
51.82
63.59
29.93
0.0727
0.0366
0.0393
0.0198
0.0105
0.0060
0.0037
1
2
1
3.
1
16.66
0.0194
4
1
60.51
10.46
0.0111
1
69.20
7.14
0.00682
Σ -00793
oʻoi) + Ao) .
Ae 6) = C, log10
Cc =0.16, e,=0.85, Sc= 0.0793 m= 79.3 mm.
(3) Weighted average pressure increase (Simpson's rule):
At the center of clay: o% =1.5(17) + 0.5(19-9.81) + 2.5(18.5-9.81)= 51.82 kN/m²
1
At z = 1.0m from the base of foundation: Ao =150
= 75 kN/m²
[(1/1)² +1}3/2]
1
At z = 3.5m from the base of foundation: Ao =150{1-
=16.66 kN/m?
[(1/3.5)² + 1}3/2 J
1
At z = 6.0m from the base of foundation: Ao =150{1-
= 6.04 kN/m²
[(1/6)? +1]3/2 ]
(Ao; + 4Aom + Ao) ==[75 + 4(16.66) + 6.04] = 24.61 kN/m²
o, +Ao -0.16.log10
.. Aoavg.
51.82 + 24.61
Ae =C, log10
= 0.027
51.82
Де
-Hi
1+e.
0.027
-(5)(1000) =72.9 mm
1+ 0.85
Transcribed Image Text:• Calculation of increase of stress below the center of each sub-layer Aoi): 1 For 1“. Layer. Aoq) =150'1-- | = 63.59 kN/m² [(1/1.5)² + 13/2 1 For 2nd. Layer: Ao 2) =1 = 29.93 kN/m² [(1/2.5)² + 1]3/2 1 For 3rd Layer: Ao) =150{1. =16.66 kN/m² [(1/3.5)² +1]3/2 1 For 4. Layer: Ao(4) =150 - =10.46 kN/m² [(1/4.5)² +1]3/2 1 For 5th. Layer: Ao(5) =150 = 7.14 kN/m² [(1/5.5)² +1]3/2 Ae 6) AH; Ae (1) - AH; 1+e, Layer no. kN/m2 kN/m² m 35.44 43.13 51.82 63.59 29.93 0.0727 0.0366 0.0393 0.0198 0.0105 0.0060 0.0037 1 2 1 3. 1 16.66 0.0194 4 1 60.51 10.46 0.0111 1 69.20 7.14 0.00682 Σ -00793 oʻoi) + Ao) . Ae 6) = C, log10 Cc =0.16, e,=0.85, Sc= 0.0793 m= 79.3 mm. (3) Weighted average pressure increase (Simpson's rule): At the center of clay: o% =1.5(17) + 0.5(19-9.81) + 2.5(18.5-9.81)= 51.82 kN/m² 1 At z = 1.0m from the base of foundation: Ao =150 = 75 kN/m² [(1/1)² +1}3/2] 1 At z = 3.5m from the base of foundation: Ao =150{1- =16.66 kN/m? [(1/3.5)² + 1}3/2 J 1 At z = 6.0m from the base of foundation: Ao =150{1- = 6.04 kN/m² [(1/6)? +1]3/2 ] (Ao; + 4Aom + Ao) ==[75 + 4(16.66) + 6.04] = 24.61 kN/m² o, +Ao -0.16.log10 .. Aoavg. 51.82 + 24.61 Ae =C, log10 = 0.027 51.82 Де -Hi 1+e. 0.027 -(5)(1000) =72.9 mm 1+ 0.85
A circular foundation 2m in diameter is shown in the figure below. A normally
consolidated clay layer 5m thick is located below the foundation. Determine the consolidation
settlement of the clay. method 2:1
(1) As one layer of clay of 5m thick:
- Divide the clay layer into (5) sub-layers each of 1m thick:
(2) Calculation of increase of stress below the center of each sub-layer Ao (1):
(3) Weighted average pressure increase (Simpson's rule):
Circular foundation
diameter B - 2m
G.S.
1.0m
Sand
q = 150 kN/m²
y = 17 kNhm²
0.5m
W.T.
Sand
0.5m
Normally consolidated clay
Y sat. = 18.5 kN/m²
C =0.16, e, =0.85
5.0m
Solution :
(1) As one layer of clay of 5m thick:
At the center of clay: 0,=1.5(17) + 0.5(19-9.81) + 2.5(18.5-9.81)= 51.82 kN/m²
For circular loaded area, the increase of stress below the center is given by:
1
Ao = q{1-
where: b=the radius of the circular foundation,
[(b/z)² +1]3/2
1
At mid-depth of the clay layer: z = 3.5m; Ao =150{1-
=16.66 kN/m²
(1/3.5)² +1]3/2
Ae =C, log10
o, + Ao
- = 0.16.log10
51.82 +16.66
= 0.0194
51.82
Де
-H; =
1+ 0.85
0.0194
-(5)(1000) =52.4 mm
1+e,
(2) Divide the clay layer into (5) sub-layers each of 1m thick:
• Calculation of effective stress at the middle of each sub-layer o'oi):
For 1*. Layer: oom=1.5(17) +0.5(19-9.81) + 0.5(18.5-9.81) = 35.44 kN/m²
For 2nd. Layer: oo(2)= 35.44 +1.0(18.5-9.81) = 35.44 + 8.69 = 43.13 kN/m²
For 3rd. Layer: oo(3) = 43.13 + 8.69 = 51.81 kN/m²
For 4. Layer: (4)= 51.81 + 8.69 = 60.51 kN/m²
For 5". Layer: (5)= 60.51 + 8.69 = 69.20 kN/m?
Transcribed Image Text:A circular foundation 2m in diameter is shown in the figure below. A normally consolidated clay layer 5m thick is located below the foundation. Determine the consolidation settlement of the clay. method 2:1 (1) As one layer of clay of 5m thick: - Divide the clay layer into (5) sub-layers each of 1m thick: (2) Calculation of increase of stress below the center of each sub-layer Ao (1): (3) Weighted average pressure increase (Simpson's rule): Circular foundation diameter B - 2m G.S. 1.0m Sand q = 150 kN/m² y = 17 kNhm² 0.5m W.T. Sand 0.5m Normally consolidated clay Y sat. = 18.5 kN/m² C =0.16, e, =0.85 5.0m Solution : (1) As one layer of clay of 5m thick: At the center of clay: 0,=1.5(17) + 0.5(19-9.81) + 2.5(18.5-9.81)= 51.82 kN/m² For circular loaded area, the increase of stress below the center is given by: 1 Ao = q{1- where: b=the radius of the circular foundation, [(b/z)² +1]3/2 1 At mid-depth of the clay layer: z = 3.5m; Ao =150{1- =16.66 kN/m² (1/3.5)² +1]3/2 Ae =C, log10 o, + Ao - = 0.16.log10 51.82 +16.66 = 0.0194 51.82 Де -H; = 1+ 0.85 0.0194 -(5)(1000) =52.4 mm 1+e, (2) Divide the clay layer into (5) sub-layers each of 1m thick: • Calculation of effective stress at the middle of each sub-layer o'oi): For 1*. Layer: oom=1.5(17) +0.5(19-9.81) + 0.5(18.5-9.81) = 35.44 kN/m² For 2nd. Layer: oo(2)= 35.44 +1.0(18.5-9.81) = 35.44 + 8.69 = 43.13 kN/m² For 3rd. Layer: oo(3) = 43.13 + 8.69 = 51.81 kN/m² For 4. Layer: (4)= 51.81 + 8.69 = 60.51 kN/m² For 5". Layer: (5)= 60.51 + 8.69 = 69.20 kN/m?
Expert Solution
steps

Step by step

Solved in 4 steps

Blurred answer
Knowledge Booster
Introduction to engineering design
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Principles of Foundation Engineering (MindTap Cou…
Principles of Foundation Engineering (MindTap Cou…
Civil Engineering
ISBN:
9781305081550
Author:
Braja M. Das
Publisher:
Cengage Learning
Principles of Geotechnical Engineering (MindTap C…
Principles of Geotechnical Engineering (MindTap C…
Civil Engineering
ISBN:
9781305970939
Author:
Braja M. Das, Khaled Sobhan
Publisher:
Cengage Learning
Principles of Foundation Engineering (MindTap Cou…
Principles of Foundation Engineering (MindTap Cou…
Civil Engineering
ISBN:
9781337705028
Author:
Braja M. Das, Nagaratnam Sivakugan
Publisher:
Cengage Learning
Fundamentals of Geotechnical Engineering (MindTap…
Fundamentals of Geotechnical Engineering (MindTap…
Civil Engineering
ISBN:
9781305635180
Author:
Braja M. Das, Nagaratnam Sivakugan
Publisher:
Cengage Learning