A possible means of space flight is to place a perfectly reflecting aluminized sheet into orbit around the Earth and then use the light from the Sun to push this "solar sail." Suppose a sail of area A = 6.90 x 105 m2 and mass m = 5,000 kg is placed in orbit facing the Sun. Ignore all gravitational effects and assume a solar intensity of 1,370 W/m2. (a) What force (in N) is exerted on the sail? (Enter the magnitude.) N (b) What is the sail's acceleration? (Enter the magnitude in um/s².) ) um/s² (c) Assuming the acceleration calculated in part (b) remains constant, find the time interval (in days) required for the sail to reach the Moon, 3.84 x 10° m away, starting from rest at the Earth. days (d) What If? If the solar sail were initially in Earth orbit at an altitude of 400 km, show that a sail of this mass density could not escape Earth's gravitational pull regardless of size. (Calculate the magnitude of the gravitational field in m/s.) m/s2 (e) What would the mass density (in kg/m-) of the solar sail have to be for the solar sail to attain the same initial acceleration as that in part (b)? ] kg/m²

icon
Related questions
Question
A possible means of space flight is to place a perfectly reflecting aluminized sheet into orbit around the Earth and then use the light from the Sun to push this "solar sail." Suppose a sail of area A = 6.90 x 105 m2 and mass m = 5,000 kg is placed in orbit facing the Sun.
Ignore all gravitational effects and assume a solar intensity of 1,370 W/m?.
(a) What force (in N) is exerted on the sail? (Enter the magnitude.)
(b) What is the sail's acceleration? (Enter the magnitude in um/s2.)
|um/s?
(c) Assuming the acceleration calculated in part (b) remains constant, find the time interval (in days) required for the sail to reach the Moon, 3.84 x 10° m away, starting from rest at the Earth.
days
(d) What If? If the solar sail were initially in Earth orbit at an altitude of 400 km, show that a sail of this mass density could not escape Earth's gravitational pull regardless of size. (Calculate the magnitude of the gravitational field in m/s².)
m/s2
(e) What would the mass density (in kg/m2) of the solar sail have to be for the solar sail to attain the same initial acceleration as that in part (b)?
kg/m2
Transcribed Image Text:A possible means of space flight is to place a perfectly reflecting aluminized sheet into orbit around the Earth and then use the light from the Sun to push this "solar sail." Suppose a sail of area A = 6.90 x 105 m2 and mass m = 5,000 kg is placed in orbit facing the Sun. Ignore all gravitational effects and assume a solar intensity of 1,370 W/m?. (a) What force (in N) is exerted on the sail? (Enter the magnitude.) (b) What is the sail's acceleration? (Enter the magnitude in um/s2.) |um/s? (c) Assuming the acceleration calculated in part (b) remains constant, find the time interval (in days) required for the sail to reach the Moon, 3.84 x 10° m away, starting from rest at the Earth. days (d) What If? If the solar sail were initially in Earth orbit at an altitude of 400 km, show that a sail of this mass density could not escape Earth's gravitational pull regardless of size. (Calculate the magnitude of the gravitational field in m/s².) m/s2 (e) What would the mass density (in kg/m2) of the solar sail have to be for the solar sail to attain the same initial acceleration as that in part (b)? kg/m2
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps

Blurred answer