A violin string of ?=31.8 cm in length and ?=0.64gm⁄ linear mass density is tuned to play an A4 note at 440.0 Hz. This means that the string is in its fundamental oscillation mode, i.e., it will be on that note without placing any fingers on it. From this information, A. Calculate the tension on the string that allows it to be kept in tune. B. If from the midpoint of the string a maximum transverse motion 2.59 mm is observed when it is in the fundamental mode, what is the maximum
A violin string of ?=31.8 cm in length and ?=0.64gm⁄ linear mass density is tuned to play an A4 note at 440.0 Hz. This means that the string is in its fundamental oscillation mode, i.e., it will be on that note without placing any fingers on it. From this information, A. Calculate the tension on the string that allows it to be kept in tune. B. If from the midpoint of the string a maximum transverse motion 2.59 mm is observed when it is in the fundamental mode, what is the maximum
Related questions
Question
A violin string of ?=31.8 cm in length and ?=0.64gm⁄ linear mass density is tuned to play an A4 note at 440.0 Hz. This means that the string is in its fundamental oscillation mode, i.e., it will be on that note without placing any fingers on it. From this information,
A. Calculate the tension on the string that allows it to be kept in tune.
B. If from the midpoint of the string a maximum transverse motion 2.59 mm is observed when it is in the fundamental mode, what is the maximum speed ?? ?á? of the string's antinode?
I need help with the B part please :)
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images