April 2010, the worst oil spill ever recorded occurred when an explosion and fire on the Deepwater Horizon offshore oil-drilling rig left 11 workers dead and began releasing oil into the Gulf of Mexico. One of the attempts to contain the spill involved pumping drilling mud into the well to balance the pressure of escaping oil against a column of fluid (the mud) having a density significantly higher than those of seawater and oil. In the following problems, you may assume that seawater has a specific gravity of 1.03 and that the subsea wellhead was 5053 ft below the surface of the Gulf. (a) Estimate the gauge pressure (psig) in the Gulf at a depth of 5053 ft. (b) Measurements indicate that the pressure inside the wellhead is 4400 psig. Suppose a pipe between the surface of the Gulf and the wellhead is filled with drilling mud and balances that pressure. Estimate the specific gravity of the drilling mud. barite in the slurry? estimated in Part (c)? Explain your reasoning. (c) The drilling mud is a stable slurry of seawater and barite (SG 4.37). What is the mass fraction of (d) What would you expect to happen if the barite weight fraction were significantly less than that

Question
Expert Solution

Want to see the full answer?

Check out a sample Q&A here
Students who’ve seen this question also like:
Introduction to Chemical Engineering Thermodynamics
8th Edition
ISBN: 9781259696527
Author: J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher: McGraw-Hill Education