Consider an actual vapor-compression refrigeration cycle. R-134a enters the compressor as superheated vapor at 0.18 MPa and -10°C at a rate of 0.055 kg/s, and it leaves at 1.2 MPa and 60°C. The refrigerant is cooled in the condenser to 42°C and 1.15 MPa, and it is throttled to 0.22 MPa. Determine the rate of heat addition to the evaporator, in kW.

Refrigeration and Air Conditioning Technology (MindTap Course List)
8th Edition
ISBN:9781305578296
Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Chapter28: Special Refrigeration Applications
Section: Chapter Questions
Problem 15RQ: Why is two-stage compression popular for extra-low-temperature refrigeration systems?
icon
Related questions
Question
Determine the power input to the compressor, in kW.
Transcribed Image Text:Determine the power input to the compressor, in kW.
Consider an actual vapor-compression refrigeration cycle. R-134a enters the
compressor as superheated vapor at 0.18 MPa and -10°C at a rate of 0.055 kg/s,
and it leaves at 1.2 MPa and 60°C. The refrigerant is cooled in the condenser to
42°C and 1.15 MPa, and it is throttled to 0.22 MPa. Determine the rate of heat
addition to the evaporator, in kW.
Transcribed Image Text:Consider an actual vapor-compression refrigeration cycle. R-134a enters the compressor as superheated vapor at 0.18 MPa and -10°C at a rate of 0.055 kg/s, and it leaves at 1.2 MPa and 60°C. The refrigerant is cooled in the condenser to 42°C and 1.15 MPa, and it is throttled to 0.22 MPa. Determine the rate of heat addition to the evaporator, in kW.
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Refrigeration and Air Conditioning
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Refrigeration and Air Conditioning Technology (Mi…
Refrigeration and Air Conditioning Technology (Mi…
Mechanical Engineering
ISBN:
9781305578296
Author:
John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:
Cengage Learning