(d) Derive the degree distribution P(k) of the network for t» 1 in the mean-field approximation. Does the model produce scale-free networks? If so, what is the value of the degree exponent y? (e) Write down the master equation of the model, i.e. the equation that describes the evolution of the average number Nk (t) of nodes that at time t have degree k. Consider the following model to grow simple networks. At time t = 1 we start with a complete network with no = 6 nodes. At each time step t> 1 a new node is added to the network. The node arrives together with m = = 2 new links, which are connected to 2 different nodes already present in the network. The probability II; that a new link is connected to node i is: m = N(t-1) Π ki - 1 Z with Z = Σ (ky - 1) j=1 I where ki is the degree of node i, and N(t - 1) is the number of nodes in the network at time t-1.

Linear Algebra: A Modern Introduction
4th Edition
ISBN:9781285463247
Author:David Poole
Publisher:David Poole
Chapter2: Systems Of Linear Equations
Section2.4: Applications
Problem 28EQ
icon
Related questions
Question
(d) Derive the degree distribution P(k) of the network for t» 1 in the mean-field
approximation. Does the model produce scale-free networks? If so, what is the
value of the degree exponent y?
(e) Write down the master equation of the model, i.e. the equation that describes the
evolution of the average number Nk (t) of nodes that at time t have degree k.
Transcribed Image Text:(d) Derive the degree distribution P(k) of the network for t» 1 in the mean-field approximation. Does the model produce scale-free networks? If so, what is the value of the degree exponent y? (e) Write down the master equation of the model, i.e. the equation that describes the evolution of the average number Nk (t) of nodes that at time t have degree k.
Consider the following model to grow simple networks. At time t = 1 we start with a
complete network with no = 6 nodes. At each time step t> 1 a new node is added to
the network. The node arrives together with m = = 2 new links, which are connected to
2 different nodes already present in the network. The probability II; that a new
link is connected to node i is:
m =
N(t-1)
Π
ki - 1
Z
with Z =
Σ (ky - 1)
j=1
I
where ki is the degree of node i, and N(t - 1) is the number of nodes in the network at
time t-1.
Transcribed Image Text:Consider the following model to grow simple networks. At time t = 1 we start with a complete network with no = 6 nodes. At each time step t> 1 a new node is added to the network. The node arrives together with m = = 2 new links, which are connected to 2 different nodes already present in the network. The probability II; that a new link is connected to node i is: m = N(t-1) Π ki - 1 Z with Z = Σ (ky - 1) j=1 I where ki is the degree of node i, and N(t - 1) is the number of nodes in the network at time t-1.
Expert Solution
steps

Step by step

Solved in 2 steps with 5 images

Blurred answer
Recommended textbooks for you
Linear Algebra: A Modern Introduction
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:
9781133382119
Author:
Swokowski
Publisher:
Cengage
College Algebra
College Algebra
Algebra
ISBN:
9781337282291
Author:
Ron Larson
Publisher:
Cengage Learning
Big Ideas Math A Bridge To Success Algebra 1: Stu…
Big Ideas Math A Bridge To Success Algebra 1: Stu…
Algebra
ISBN:
9781680331141
Author:
HOUGHTON MIFFLIN HARCOURT
Publisher:
Houghton Mifflin Harcourt