Calculus: Early Transcendentals
Calculus: Early Transcendentals
8th Edition
ISBN: 9781285741550
Author: James Stewart
Publisher: Cengage Learning
Bartleby Related Questions Icon

Related questions

Topic Video
Question
**Problem Statement:**

Find the length of the curve given by \( x = \frac{y^2}{4} \), \( 0 \leq y \leq 2 \). State the integration method used to evaluate the integral. 
(If applicable, you may use the integral formula for \( \sec^3 x \) derived in Trigonometric Integrals example video.)

**Instructions for Students:**

1. Identify the curve and its given equation.
2. Use the appropriate formula to find the length of the curve.
3. Clearly state the method of integration you use to solve the integral.
4. Refer to Trigonometric Integrals example video for additional guidance on using the integral formula for \( \sec^3 x \), if applicable.

**Steps to Follow:**

1. **Understand the Curve Equation:** The curve is defined by the equation \( x = \frac{y^2}{4} \).
   
2. **Curve Length Formula:** To find the length of the curve \( y = f(x) \) from \( y = a \) to \( y = b \), use the arc length formula:
   \[
   L = \int_{a}^{b} \sqrt{1 + \left( \frac{dx}{dy} \right)^2} \, dy
   \]

3. **Derivative Calculation:** Compute the derivative \( \frac{dx}{dy} \):
   \[
   x = \frac{y^2}{4} \Rightarrow \frac{dx}{dy} = \frac{d}{dy} \left( \frac{y^2}{4} \right) = \frac{y}{2}
   \]

4. **Substitute into Length Formula:** Substitute \( \frac{dx}{dy} \) into the arc length formula:
   \[
   L = \int_{0}^{2} \sqrt{1 + \left( \frac{y}{2} \right)^2} \, dy
   \]
   Simplify the integrand:
   \[
   L = \int_{0}^{2} \sqrt{1 + \frac{y^2}{4}} \, dy = \int_{0}^{2} \sqrt{\frac{4 + y^2}{4}} \, dy = \int_{0}^{2} \frac{\sqrt{4 + y^2}}{
expand button
Transcribed Image Text:**Problem Statement:** Find the length of the curve given by \( x = \frac{y^2}{4} \), \( 0 \leq y \leq 2 \). State the integration method used to evaluate the integral. (If applicable, you may use the integral formula for \( \sec^3 x \) derived in Trigonometric Integrals example video.) **Instructions for Students:** 1. Identify the curve and its given equation. 2. Use the appropriate formula to find the length of the curve. 3. Clearly state the method of integration you use to solve the integral. 4. Refer to Trigonometric Integrals example video for additional guidance on using the integral formula for \( \sec^3 x \), if applicable. **Steps to Follow:** 1. **Understand the Curve Equation:** The curve is defined by the equation \( x = \frac{y^2}{4} \). 2. **Curve Length Formula:** To find the length of the curve \( y = f(x) \) from \( y = a \) to \( y = b \), use the arc length formula: \[ L = \int_{a}^{b} \sqrt{1 + \left( \frac{dx}{dy} \right)^2} \, dy \] 3. **Derivative Calculation:** Compute the derivative \( \frac{dx}{dy} \): \[ x = \frac{y^2}{4} \Rightarrow \frac{dx}{dy} = \frac{d}{dy} \left( \frac{y^2}{4} \right) = \frac{y}{2} \] 4. **Substitute into Length Formula:** Substitute \( \frac{dx}{dy} \) into the arc length formula: \[ L = \int_{0}^{2} \sqrt{1 + \left( \frac{y}{2} \right)^2} \, dy \] Simplify the integrand: \[ L = \int_{0}^{2} \sqrt{1 + \frac{y^2}{4}} \, dy = \int_{0}^{2} \sqrt{\frac{4 + y^2}{4}} \, dy = \int_{0}^{2} \frac{\sqrt{4 + y^2}}{
Expert Solution
Check Mark
Knowledge Booster
Background pattern image
Calculus
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
Calculus: Early Transcendentals
Calculus
ISBN:9781285741550
Author:James Stewart
Publisher:Cengage Learning
Text book image
Thomas' Calculus (14th Edition)
Calculus
ISBN:9780134438986
Author:Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:PEARSON
Text book image
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:9780134763644
Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:PEARSON
Text book image
Calculus: Early Transcendentals
Calculus
ISBN:9781319050740
Author:Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:W. H. Freeman
Text book image
Precalculus
Calculus
ISBN:9780135189405
Author:Michael Sullivan
Publisher:PEARSON
Text book image
Calculus: Early Transcendental Functions
Calculus
ISBN:9781337552516
Author:Ron Larson, Bruce H. Edwards
Publisher:Cengage Learning