Ethylene flows through a pipeline 10 km long to a receiving station A. At a point 3 km from A, a spur leads off the main pipeline and runs 5 km to a receiving station B. The internal diameter of the main pipeline is 0.20 m and that of the spur is 0.15 m. The flow rates into A and B are regulated by valves at these locations. If the pressure immediately upstream of valve A is 3.88 bar (absolute) and that at B is 3.69 bar when the flow rate into B is 0.63 kg/s, calculate the pressure at the beginning of the main pipeline, assuming that flow in the pipeline is isothermal at a temperature of 20°C. Data: specific volume of ethylene at 200C, 1 bar = 0.870 m³/kg, Fanning friction factor = 0.0045.

Introduction to Chemical Engineering Thermodynamics
8th Edition
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Chapter1: Introduction
Section: Chapter Questions
Problem 1.1P
icon
Related questions
Question
2- Ethylene flows through a pipeline 10 km long to a receiving station A. At a point 3
km from A, a spur leads off the main pipeline and runs 5 km to a receiving station
B. The internal diameter of the main pipeline is 0.20 m and that of the spur is 0.15
m. The flow rates into A and B are regulated by valves at these locations. If the
pressure immediately upstream of valve A is 3.88 bar (absolute) and that at B is 3.69
bar when the flow rate into B is 0.63 kg/s, calculate the pressure at the beginning of
the main pipeline, assuming that flow in the pipeline is isothermal at a temperature
of 20°C. Data: specific volume of ethylene at 200C, 1 bar = 0.870 m³/kg, Fanning
friction factor = 0.0045.
Transcribed Image Text:2- Ethylene flows through a pipeline 10 km long to a receiving station A. At a point 3 km from A, a spur leads off the main pipeline and runs 5 km to a receiving station B. The internal diameter of the main pipeline is 0.20 m and that of the spur is 0.15 m. The flow rates into A and B are regulated by valves at these locations. If the pressure immediately upstream of valve A is 3.88 bar (absolute) and that at B is 3.69 bar when the flow rate into B is 0.63 kg/s, calculate the pressure at the beginning of the main pipeline, assuming that flow in the pipeline is isothermal at a temperature of 20°C. Data: specific volume of ethylene at 200C, 1 bar = 0.870 m³/kg, Fanning friction factor = 0.0045.
Expert Solution
steps

Step by step

Solved in 4 steps with 10 images

Blurred answer
Recommended textbooks for you
Introduction to Chemical Engineering Thermodynami…
Introduction to Chemical Engineering Thermodynami…
Chemical Engineering
ISBN:
9781259696527
Author:
J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:
McGraw-Hill Education
Elementary Principles of Chemical Processes, Bind…
Elementary Principles of Chemical Processes, Bind…
Chemical Engineering
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY
Elements of Chemical Reaction Engineering (5th Ed…
Elements of Chemical Reaction Engineering (5th Ed…
Chemical Engineering
ISBN:
9780133887518
Author:
H. Scott Fogler
Publisher:
Prentice Hall
Process Dynamics and Control, 4e
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:
9781119285915
Author:
Seborg
Publisher:
WILEY
Industrial Plastics: Theory and Applications
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:
9781285061238
Author:
Lokensgard, Erik
Publisher:
Delmar Cengage Learning
Unit Operations of Chemical Engineering
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:
9780072848236
Author:
Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:
McGraw-Hill Companies, The