Skip to main content
Question
Evaluate the integral
x cos(3x) dx
Note: Use an upper-case "C" for the constant of integration
expand button
Transcribed Image Text:Evaluate the integral x cos(3x) dx Note: Use an upper-case "C" for the constant of integration
Expert Solution

Want to see the full answer?

Check out a sample Q&A here
Blurred answer
Students who’ve seen this question also like:
Calculus: Early Transcendentals
Calculus: Early Transcendentals
8th Edition
ISBN: 9781285741550
Author: James Stewart
Publisher: Cengage Learning
Not helpful? See similar books
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Functions And Models. 1RCC
marketing sidebar icon
Want to see this answer and more?
Experts are waiting 24/7 to provide step-by-step solutions in as fast as 30 minutes!*
*Response times may vary by subject and question complexity. Median response time is 34 minutes for paid subscribers and may be longer for promotional offers.

Related Calculus Q&A

Find answers to questions asked by students like you.

Q: Find the integral. (Use C for the constant of integration.) sin(-3x)cos(2x) dx

A: Click to see the answer

Q: Evaluate the integral. (Use C for the constant of integration.) x5 dx

A: Click to see the answer

Q: Evaluate the integral. (Use C for the constant of integration.) 1- sin(x) dx

A: Click to see the answer

Q: Evaluate the integral. (Use C for the constant of integration.) x cos(6x) dx

A: Let, u=x and dv=cos(6x)

Q: Evaluate the integral. (Use C for the constant of integration.) 15x cos?(x) dx

A: Click to see the answer

Q: Evaluate the integral. (Use C for the constant of integration.) (8x + 7 sin(x))? dx

A: Answer is given below....

Q: Evaluate the integral -1 dx x² + 16 Note: Use an upper-case "C" for the constant of integration.

A: LetI=∫-1x2+16dxTake the constant out:  ∫a·fxdx=a·∫fxdxI=-∫1x2+16dxI=-∫1x2+42dxPur x=4tany…

Q: Find the integral. (Use C for the constant of integration.) (x6 + 5-×) dx

A: In this question, we need to find the integral of given function.

Q: Evaluate the integral. (Use C for the constant of integration.) dx x2 + 49 In sec| arctan + tan|…

A: Click to see the answer

Q: Evaluate the integral. (Use C for the constant of integration.) 2 sin?(x) cos (x) dx

A: Let the given integral be y - y = ∫2sin2xcos3xdxy = 2∫sin2xcos3xdxy = 2∫sin2xcos2xcosxdxy =…

Q: Evaluate the integral. (Use C for the constant of integration.) | 2 sin?(x) cos (x) dx

A: Let, z=sin(x)dz=cos(x)dx

Q: Evaluate the integral. (Use C for the constant of integration.) (ln(x))2 dx

A: Click to see the answer

Q: Evaluate the integral. (Use C for the constant of integration.) (3* – 5*) dx

A: Click to see the answer

Q: Evaluate the integral. (Use C for the constant of integration.) (3× – 5*) dx

A: Click to see the answer

Q: Evaluate the integral. (Use C for the constant of integration.) 9)sin(xx) dx

A: Click to see the answer

Q: Evaluate the integral. (Use C for the constant of integration.) tan (x) cos7(x) dx

A: Firstly we will rewrite the given integral as shown below and then solve the integral by using…

Q: Evaluate the integral. (Use C for the constant of integration.) 10 sin(2x) dx 1 + cos“(x)

A: Answer is -10arctan(cos^2x)+C.

Q: Evaluate the integral. (Use C for the constant of integration.) tan (x) cos7(x) dx

A: Click to see the answer

Q: Use integration tables to find or evaluate the integral ∫ 1 / sin   x cos   x dx

A: We have to evaluate the integral: ∫1sin x cos xdx We know the identity: sin2x+cos2x=1 Substituting…

Q: Evaluate the integral 8 dx x² V25 – x2 Note: Use an upper-case "C" for the constant of integration.

A: Click to see the answer

Q: Evaluate the integral. (Use C for the constant of integration.) (2× – 5*) dx

A: Click to see the answer

Q: Evaluate the integral. (Use C for the constant of integration.) V1- x4 dx

A: Given:  Let I=∫3x1-x4 dx  To Find: To evaluate the given integral.

Q: Evaluate the integral. (Use C for the constant of integration.) ln(√x) dx

A: I = ∫ln(x)dxUsing,     ln ab=b ln aI  = ∫ln(x)12dxI =12∫ln(x) dx

Q: Evaluate the integral. (Use C for the constant of integration.) (x2 - 9x) dx

A: Click to see the answer

Q: Evaluate the integral. (Use C for the constant of integration.) 7 cos (a) da sin(æ)

A: Explanation of the answer is as follows

Q: Evaluate the integral. (Use C for the constant of integration.) 9 sin(2x) dx 1 + cos“(x)

A: Click to see the answer

Q: Use the Table of Integrals to evaluate the integral. (Use C for the constant of integration.) x…

A: Click to see the answer

Q: Evaluate the integral. (Use C for the constant of integration.) ∫ 3 tan2(x) dx

A: Click to see the answer

Q: Evaluate the integral | 2 cos(In(x)) dx, x > 0 Note: Use an upper-case "C" for the constant of…

A: Given information: The integral is ∫ 2coslnxdx. Concept used: Integration by parts: ∫udv=uv-∫vdu…

Q: Evaluate the integral by making the given substitution. (Use C for the constant of integration.)…

A: Given,           ∫sin4(x)cos(x)dx   and use substitution u=sin(x)

Q: Evaluate the integral. (Use C for the constant of integration.) 9 sin(4) cos³(4) dp

A: Given integral is  Let us take

Q: how to solve problem in photo attached

A: Given:

Q: Evaluate the integral. (Use C for the constant of integration.) 9x cos(8x) dx

A: Integrate this by integration by parts

Q: Find the indefinite integral. (Use C for the constant of integration.) (4 cos x + 5 sin x) dx

A: Click to see the answer

Q: Find the indefinite integral. (Use C for the constant of integration.) sin x xp 5 + cos? x

A: This question is related to indefinite integration, We will solve it using substitution method.

Q: Find the indefinite integral. (Use C for the constant of integration.) -cos X dx sin5 x

A: Click to see the answer

Q: Evaluate the integral. (Use C for the constant of integration.) 33 + 8x – x2 dx

A: Click to see the answer

Q: Use the indicated formula from the integration table in Appendix C to find the indefinite integral.…

A: Given query is to find the value of integration by given formula.

Q: Evaluate the integral. (Use C for the constant of integration.) 3 + 2x - x2 dx

A: Click to see the answer

Q: Use the Table of Integrals to evaluate the integral. (Use C for the constant of integration.) dx x2…

A: Given: ∫dxx24x2+81

Q: Evaluate the indefinite integral. (Use C for the constant of integration.) ecos(25t) sin(25t) dt

A: Click to see the answer

Knowledge Booster
Recommended textbooks for you
  • Calculus: Early Transcendentals
    Calculus
    ISBN:9781285741550
    Author:James Stewart
    Publisher:Cengage Learning
    Thomas' Calculus (14th Edition)
    Calculus
    ISBN:9780134438986
    Author:Joel R. Hass, Christopher E. Heil, Maurice D. Weir
    Publisher:PEARSON
    Calculus: Early Transcendentals (3rd Edition)
    Calculus
    ISBN:9780134763644
    Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
    Publisher:PEARSON
  • Calculus: Early Transcendentals
    Calculus
    ISBN:9781319050740
    Author:Jon Rogawski, Colin Adams, Robert Franzosa
    Publisher:W. H. Freeman
    Precalculus
    Calculus
    ISBN:9780135189405
    Author:Michael Sullivan
    Publisher:PEARSON
    Calculus: Early Transcendental Functions
    Calculus
    ISBN:9781337552516
    Author:Ron Larson, Bruce H. Edwards
    Publisher:Cengage Learning
  • Calculus: Early Transcendentals
    Calculus
    ISBN:9781285741550
    Author:James Stewart
    Publisher:Cengage Learning
    Thomas' Calculus (14th Edition)
    Calculus
    ISBN:9780134438986
    Author:Joel R. Hass, Christopher E. Heil, Maurice D. Weir
    Publisher:PEARSON
    Calculus: Early Transcendentals (3rd Edition)
    Calculus
    ISBN:9780134763644
    Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
    Publisher:PEARSON
    Calculus: Early Transcendentals
    Calculus
    ISBN:9781319050740
    Author:Jon Rogawski, Colin Adams, Robert Franzosa
    Publisher:W. H. Freeman
    Precalculus
    Calculus
    ISBN:9780135189405
    Author:Michael Sullivan
    Publisher:PEARSON
    Calculus: Early Transcendental Functions
    Calculus
    ISBN:9781337552516
    Author:Ron Larson, Bruce H. Edwards
    Publisher:Cengage Learning