.TIS1 STX Q \ Set Q = X EOR #%10000000 \ Flip the sign bit in A JSR MAD \ Set (A X) = Q * A + (S R) \ = X * -A + (S R) .DVID96 TAX \ Set T to the sign bit of the result AND #%10000000 STA T TXA \ Set A to the high byte of the result with the sign bit AND #%01111111 \ cleared, so (A ?) = |X * A + (S R)| \ The following is identical to TIS2, except Q is \ hard-coded to 96, so this does A = A / 96 LDX #254 \ Set T1 to have bits 1-7 set, so we can rotate through STX T1 \ 7 loop iterations, getting a 1 each time, and then \ getting a 0 on the 8th iteration... and we can also \ use T1 to catch our result bits into bit 0 each time .DVL3 ASL A \ Shift A to the left CMP #96 \ If A < 96 skip the following subtraction BCC DV4 SBC #96 \ Set A = A - 96 \ \ Going into this subtraction we know the C flag is \ set as we passed through the BCC above, and we also \ know that A >= 96, so the C flag will still be set \ once we are done .DV4 ROL T1 \ Rotate the counter in T1 to the left, and catch the \ result bit into bit 0 (which will be a 0 if we didn't \ do the subtraction, or 1 if we did) BCS DVL3 \ If we still have set bits in T1, loop back to DVL3 to \ do the next iteration of 7 LDA T1 \ Fetch the result from T1 into A ORA T \ Give A the sign of the result that we stored above RTS \ Return from the subroutineName: TIS1 [Show more] Type: Subroutine Category: Maths (Arithmetic) Summary: Calculate (A ?) = (-X * A + (S R)) / 96 Deep dive: Shift-and-subtract divisionContext: See this subroutine in context in the source code References: This subroutine is called as follows: * TIDY calls TIS1

Calculate the following expression between sign-magnitude numbers, ignoring the low byte of the result: (A ?) = (-X * A + (S R)) / 96 This uses the same shift-and-subtract algorithm as TIS2, just with the quotient A hard-coded to 96. Returns: Q Gets set to the value of argument X

[X]

Label DV4 is local to this routine

[X]

Label DVL3 is local to this routine

[X]

Subroutine MAD (category: Maths (Arithmetic))

Calculate (A X) = Q * A + (S R)