Let V and W be vector spaces over a field K having bases α = {V₁, V₂} and B = {w₁, W2, W3} respectively. Recall that the set of linear transformations (V, W) = {T: V → W | T is linear} is a vector space. For i = 1,2 and j = 1,2,3 define Tij : V → W by if k = i, if k i Recall that by Theorem 34, the above information is sufficient to define each Tij as a linear transformation since it specifies the value on the basis {V₁, V₂}. (a) Let S = 2T12 - 3T23 + 4T₁1. Evaluate S(2v₁ - 30₂) and compute the matrix [S]. (b) (c) ] Prove that A = {T11, T12, T13, T21, T22, T23} is a basis of (V, W). 0 (36) 0 1 Let B = Tij (Uk) = { W ₁ 0 :(V, W). → M 3x2 (K) by 0 be the standard basis of M 3x2 (K). Define $(T) = [T] and recall from Theorem 46 that is an isomorphism (in particular, is a linear transformation). Compute its matrix [$13.

Linear Algebra: A Modern Introduction
4th Edition
ISBN:9781285463247
Author:David Poole
Publisher:David Poole
Chapter6: Vector Spaces
Section6.5: The Kernel And Range Of A Linear Transformation
Problem 38EQ
icon
Related questions
Question

only answer part b no need to solve other parts just part b required

Let V and W be vector spaces over a field K having bases α = {V₁, V₂} and B = {w₁, W2, W3} respectively.
Recall that the set of linear transformations
(V, W) = {T: V → W | T is linear}
is a vector space. For i = 1,2 and j = 1,2,3 define Tij : V → W by
if k = i,
Tij (Uk) = { W ₁ if k i
Recall that by Theorem 34, the above information is sufficient to define each Tij as a linear transformation since
it specifies the value on the basis {V₁, V₂}.
(a)
Let S = 2T12 - 3T23 + 4T₁1. Evaluate S(2v₁ - 30₂) and compute the matrix [S].
(b)
(c)
] Prove that A = {T11, T12, T13, T21, T22, T23} is a basis of (V, W).
0
(36)
0 1
Let B =
0
:(V, W). → M 3x2 (K) by
0 be the standard basis of M 3x2 (K). Define
$(T) = [T]
and recall from Theorem 46 that is an isomorphism (in particular, is a linear transformation). Compute its matrix
[$13.
Transcribed Image Text:Let V and W be vector spaces over a field K having bases α = {V₁, V₂} and B = {w₁, W2, W3} respectively. Recall that the set of linear transformations (V, W) = {T: V → W | T is linear} is a vector space. For i = 1,2 and j = 1,2,3 define Tij : V → W by if k = i, Tij (Uk) = { W ₁ if k i Recall that by Theorem 34, the above information is sufficient to define each Tij as a linear transformation since it specifies the value on the basis {V₁, V₂}. (a) Let S = 2T12 - 3T23 + 4T₁1. Evaluate S(2v₁ - 30₂) and compute the matrix [S]. (b) (c) ] Prove that A = {T11, T12, T13, T21, T22, T23} is a basis of (V, W). 0 (36) 0 1 Let B = 0 :(V, W). → M 3x2 (K) by 0 be the standard basis of M 3x2 (K). Define $(T) = [T] and recall from Theorem 46 that is an isomorphism (in particular, is a linear transformation). Compute its matrix [$13.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Linear Algebra: A Modern Introduction
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
Elementary Linear Algebra (MindTap Course List)
Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:
9781305658004
Author:
Ron Larson
Publisher:
Cengage Learning
Algebra and Trigonometry (MindTap Course List)
Algebra and Trigonometry (MindTap Course List)
Algebra
ISBN:
9781305071742
Author:
James Stewart, Lothar Redlin, Saleem Watson
Publisher:
Cengage Learning