Natural selection is such a powerful force in evolution because cells with even a small proliferation advantage quickly outgrow their competitors. to illustrate this process, consider a cell culture that contains 1 million bacterial cells that double every 20 minutes. a single cell in this culture acquires a mutation that allows it to divide faster, with a generation time of only 15 minutes. assuming that there is an unlimited food supply and no cell death, how long would it take before the progeny of the mutated cell became predominant in the culture? (Before you go through the calculation, make a guess: do you think it would take about a day, a week, a month, or a year?) how many cells of either type are present in the culture at this time? (the number of cells N in the culture at time t is described by the equation N = N0 × 2t/G, where N0 is the number of cells at zero time and G is the generation time.)

Introduction to Chemical Engineering Thermodynamics
8th Edition
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Chapter1: Introduction
Section: Chapter Questions
Problem 1.1P
icon
Related questions
Topic Video
Question

Natural selection is such a powerful force in evolution because cells with even a small proliferation advantage quickly outgrow their competitors. to illustrate this process, consider a cell culture that contains 1 million bacterial cells that double every 20 minutes. a single cell in this culture acquires a mutation that allows it to divide faster, with a generation time of only 15 minutes. assuming that there is an unlimited food supply and no cell death, how long would it take before the progeny of the mutated cell became predominant in the culture? (Before you go through the calculation, make a guess: do you think it would take about a day, a week, a month, or a year?) how many cells of either type are present in the culture at this time? (the number of cells N in the culture at time t is described by the equation N = N0 × 2t/G, where N0 is the number of cells at zero time and G is the generation time.)

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Gene expression
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemical-engineering and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Introduction to Chemical Engineering Thermodynami…
Introduction to Chemical Engineering Thermodynami…
Chemical Engineering
ISBN:
9781259696527
Author:
J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:
McGraw-Hill Education
Elementary Principles of Chemical Processes, Bind…
Elementary Principles of Chemical Processes, Bind…
Chemical Engineering
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY
Elements of Chemical Reaction Engineering (5th Ed…
Elements of Chemical Reaction Engineering (5th Ed…
Chemical Engineering
ISBN:
9780133887518
Author:
H. Scott Fogler
Publisher:
Prentice Hall
Process Dynamics and Control, 4e
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:
9781119285915
Author:
Seborg
Publisher:
WILEY
Industrial Plastics: Theory and Applications
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:
9781285061238
Author:
Lokensgard, Erik
Publisher:
Delmar Cengage Learning
Unit Operations of Chemical Engineering
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:
9780072848236
Author:
Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:
McGraw-Hill Companies, The