Newton’s law of cooling states that the temperature of an object changes at a rate proportional to the difference between the temperature of the object itself and the temperature of its surroundings (the ambient air temperature in most cases). Suppose that the ambient temperature is 85°F and that the rate constant is 0.04 (min)-. Write a differential equation for the temperature of the object at any time. Note that the differential equation is the same whether the temperature of the object is above or below the ambient temperature. NOTE: Use u for the temperature of the object in °F and t for time. du dt

icon
Related questions
Question
Newton's law of cooling states that the temperature of an object
changes at a rate proportional to the difference between the
temperature of the object itself and the temperature of its
surroundings (the ambient air temperature in most cases).
Suppose that the ambient temperature is 85°F and that the rate
constant is 0.04 (min)-. Write a differential equation for the
temperature of the object at any time. Note that the differential
equation is the same whether the temperature of the object is above
or below the ambient temperature.
NOTE: Use u for the temperature of the object in °F and t for time.
du
dt
||
Transcribed Image Text:Newton's law of cooling states that the temperature of an object changes at a rate proportional to the difference between the temperature of the object itself and the temperature of its surroundings (the ambient air temperature in most cases). Suppose that the ambient temperature is 85°F and that the rate constant is 0.04 (min)-. Write a differential equation for the temperature of the object at any time. Note that the differential equation is the same whether the temperature of the object is above or below the ambient temperature. NOTE: Use u for the temperature of the object in °F and t for time. du dt ||
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer