Overview A shell interface gives the user a prompt, after which the next command is entered. The example below illustrates the prompt osh> and the user’s next command: cat prog.c. (This command displays the file prog.c on the terminal using the UNIX cat command.) osh>cat prog.c One technique for implementing a shell interface is to have the parent process first read what the user enters on the command line (in this case, cat prog.c) and then create a separate child process that performs the command. Unless otherwise specified, the parent process waits for the child to exit before continuing. This is similar in functionality to the new process creation illustrated in Figure 3.9. However, UNIX shells typically also allow the child process to run in the background, or concurrently. To accomplish this, we add an ampersand (&) at the end of the command. Thus, if we rewrite the above command as osh>cat prog.c & the parent and child processes will run concurrently. The separate child process is created using the fork() system call, and the user’s command is executed using one of the system calls in the exec() family (as described in Section 3.3.1). A C program that provides the general operations of a command-line shell is supplied in Figure 3.36. The main() function presents the prompt osh-> and outlines the steps to be taken after input from the user has been read. The main() function continually loops as long as should run equals 1; when the user enters exit at the prompt, your program will set should run to 0 and terminate. #include #include #define MAX LINE 80 /* The maximum length command */ int main(void) { char *args[MAX LINE/2 + 1]; /* command line arguments * / int should run = 1; /* flag to determine when to exit program */ while (should run) { printf("osh>"); fflush(stdout); /** * After reading user input, the steps are: * (1) fork a child process using fork() * (2) the child process will invoke execvp() * (3) parent will invoke wait() unless command included & */ } return 0; } This project is organized into several parts: 1. Creating the child process and executing the command in the child 2. Providing a history feature 3. Adding support of input and output redirection 4. Allowing the parent and child processes to communicate via a pipe II. Executing Command in a Child Process The first task is to modify the main() function in Figure 3.36 so that a child process is forked and executes the command specified by the user. This will require parsing what the user has entered into separate tokens and storing the tokens in an array of character strings (args in Figure 3.36). For example, if the user enters the command ps -ael at the osh> prompt, the values stored in the args array are: args[0] = "ps" args[1] = "-ael" args[2] = NULL This args array will be passed to the execvp() function, which has the following prototype: execvp(char *command, char *params[]) Here, command represents the command to be performed and params stores the parameters to this command. For this project, the execvp() function should be invoked as execvp(args[0], args). Be sure to check whether the user included & to determine whether or not the parent process is to wait for the child to exit. III. Creating a History Feature The next task is to modify the shell interface program so that it provides a history feature to allow a user to execute the most recent command by entering !!. For example, if a user enters the command ls -l, she can then execute that command again by entering !! at the prompt. Any command executed in this fashion should be echoed on the user’s screen, and the command should also be placed in the history buffer as the next command. Your program should also manage basic error handling. If there is no recent command in the history, entering !! should result in a message “No commands in history.” IV Redirceting Input and Output Your shell should then be modified to support the ‘>’ and ‘<' redirection operators, where '>'  redirects the output of a command to a file and '<' redirects the input to a command from a file. For example, if a user enters osh>ls > out.txt the output from the ls command will be redirected to the file out.txt. Similarly, input can be redirected as well. For example, if the user enters osh>sort < in.txt the file in.txt will serve as input to the sort command. Managing the redirection of both input and output will involve using the dup2() function, which duplicates an existing file descriptor to another file descriptor. For example, if fd is a file descriptor to the file out.txt, the call dup2(fd, STDOUT FILENO); duplicates fd to standard output (the terminal). This means that any writes to standard output will in fact be sent to the out.txt file. You can assume that commands will contain either one input or one output redirection and will not contain both. In other words, you do not have to be concerned with command sequences such as sort < in.txt > out.txt.

Computer Networking: A Top-Down Approach (7th Edition)
7th Edition
ISBN:9780133594140
Author:James Kurose, Keith Ross
Publisher:James Kurose, Keith Ross
Chapter1: Computer Networks And The Internet
Section: Chapter Questions
Problem R1RQ: What is the difference between a host and an end system? List several different types of end...
icon
Related questions
Question

I. Overview A shell interface gives the user a prompt, after which the next command is entered. The example below illustrates the prompt osh> and the user’s next command: cat prog.c. (This command displays the file prog.c on the terminal using the UNIX cat command.)

osh>cat prog.c

One technique for implementing a shell interface is to have the parent process first read what the user enters on the command line (in this case, cat prog.c) and then create a separate child process that performs the command. Unless otherwise specified, the parent process waits for the child to exit before continuing. This is similar in functionality to the new process creation illustrated in Figure 3.9. However, UNIX shells typically also allow the child process to run in the background, or concurrently. To accomplish this, we add an ampersand (&) at the end of the command. Thus, if we rewrite the above command as

osh>cat prog.c &

the parent and child processes will run concurrently. The separate child process is created using the fork() system call, and the user’s command is executed using one of the system calls in the exec() family (as described in Section 3.3.1). A C program that provides the general operations of a command-line shell is supplied in Figure 3.36. The main() function presents the prompt osh-> and outlines the steps to be taken after input from the user has been read. The main() function continually loops as long as should run equals 1; when the user enters exit at the prompt, your program will set should run to 0 and terminate.

#include<studio.h> #include <unistd.h>

#define MAX LINE 80 /* The maximum length command */

int main(void)

{ char *args[MAX LINE/2 + 1]; /* command line arguments *

/ int should run = 1; /* flag to determine when to exit program */

while (should run)

{ printf("osh>");

fflush(stdout); /** * After reading user input, the steps are: *

(1) fork a child process using fork() *

(2) the child process will invoke execvp() *

(3) parent will invoke wait() unless command included & */

}

return 0; }

This project is organized into several parts: 1. Creating the child process and executing the command in the child 2. Providing a history feature 3. Adding support of input and output redirection 4. Allowing the parent and child processes to communicate via a pipe

II. Executing Command in a Child Process The first task is to modify the main() function in Figure 3.36 so that a child process is forked and executes the command specified by the user. This will require parsing what the user has entered into separate tokens and storing the tokens in an array of character strings (args in Figure 3.36). For example, if the user enters the command ps -ael at the osh> prompt, the values stored in the args array are:

args[0] = "ps"

args[1] = "-ael"

args[2] = NULL

This args array will be passed to the execvp() function, which has the following prototype:

execvp(char *command, char *params[])

Here, command represents the command to be performed and params stores the parameters to this command. For this project, the execvp() function should be invoked as execvp(args[0], args). Be sure to check whether the user included & to determine whether or not the parent process is to wait for the child to exit.

III. Creating a History Feature The next task is to modify the shell interface program so that it provides a history feature to allow a user to execute the most recent command by entering !!. For example, if a user enters the command ls -l, she can then execute that command again by entering !! at the prompt. Any command executed in this fashion should be echoed on the user’s screen, and the command should also be placed in the history buffer as the next command. Your program should also manage basic error handling. If there is no recent command in the history, entering !! should result in a message “No commands in history.”

IV Redirceting Input and Output

Your shell should then be modified to support the ‘>’ and ‘<' redirection operators, where '>'  redirects the output of a command to a file and '<' redirects the input to a command from a file. For example, if a user enters

osh>ls > out.txt

the output from the ls command will be redirected to the file out.txt. Similarly, input can be redirected as well. For example, if the user enters

osh>sort < in.txt

the file in.txt will serve as input to the sort command. Managing the redirection of both input and output will involve using the dup2() function, which duplicates an existing file descriptor to another file descriptor. For example, if fd is a file descriptor to the file out.txt, the call dup2(fd, STDOUT FILENO);

duplicates fd to standard output (the terminal). This means that any writes to standard output will in fact be sent to the out.txt file. You can assume that commands will contain either one input or one output redirection and will not contain both. In other words, you do not have to be concerned with command sequences such as sort < in.txt > out.txt.

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Computer Networking: A Top-Down Approach (7th Edi…
Computer Networking: A Top-Down Approach (7th Edi…
Computer Engineering
ISBN:
9780133594140
Author:
James Kurose, Keith Ross
Publisher:
PEARSON
Computer Organization and Design MIPS Edition, Fi…
Computer Organization and Design MIPS Edition, Fi…
Computer Engineering
ISBN:
9780124077263
Author:
David A. Patterson, John L. Hennessy
Publisher:
Elsevier Science
Network+ Guide to Networks (MindTap Course List)
Network+ Guide to Networks (MindTap Course List)
Computer Engineering
ISBN:
9781337569330
Author:
Jill West, Tamara Dean, Jean Andrews
Publisher:
Cengage Learning
Concepts of Database Management
Concepts of Database Management
Computer Engineering
ISBN:
9781337093422
Author:
Joy L. Starks, Philip J. Pratt, Mary Z. Last
Publisher:
Cengage Learning
Prelude to Programming
Prelude to Programming
Computer Engineering
ISBN:
9780133750423
Author:
VENIT, Stewart
Publisher:
Pearson Education
Sc Business Data Communications and Networking, T…
Sc Business Data Communications and Networking, T…
Computer Engineering
ISBN:
9781119368830
Author:
FITZGERALD
Publisher:
WILEY