The sliding glass door rolls on the two small lower wheels A and B. Under normal conditions the upper wheels do not touch their horizontal guide. (a) Compute the force P required to slide the door at a steady speed if wheel A becomes "frozen" and does not turn in its bearing. (b) Rework the problem if wheel B becomes frozen instead of wheel A. The coefficient of kinetic friction between a frozen wheel and the supporting surface is 0.33, and the center of mass of the 118-lb door is at its geometric center. Neglect the small diameter of the wheels. Answer: A (a) P = i (b) P- i 28" B 6" P lb lb 38" 38"

International Edition---engineering Mechanics: Statics, 4th Edition
4th Edition
ISBN:9781305501607
Author:Andrew Pytel And Jaan Kiusalaas
Publisher:Andrew Pytel And Jaan Kiusalaas
Chapter7: Dry Friction
Section: Chapter Questions
Problem 7.72P
icon
Related questions
Question

b.5

The sliding glass door rolls on the two small lower wheels A and B. Under normal conditions the upper wheels do not touch their
horizontal guide. (a) Compute the force P required to slide the door at a steady speed if wheel A becomes "frozen" and does not turn in
its bearing. (b) Rework the problem if wheel B becomes frozen instead of wheel A. The coefficient of kinetic friction between a frozen
wheel and the supporting surface is 0.33, and the center of mass of the 118-lb door is at its geometric center. Neglect the small
diameter of the wheels.
Answer:
(a) P =
(b) P =
A
i
i
28"
B
6"
P
lb
lb
38"
38"
Transcribed Image Text:The sliding glass door rolls on the two small lower wheels A and B. Under normal conditions the upper wheels do not touch their horizontal guide. (a) Compute the force P required to slide the door at a steady speed if wheel A becomes "frozen" and does not turn in its bearing. (b) Rework the problem if wheel B becomes frozen instead of wheel A. The coefficient of kinetic friction between a frozen wheel and the supporting surface is 0.33, and the center of mass of the 118-lb door is at its geometric center. Neglect the small diameter of the wheels. Answer: (a) P = (b) P = A i i 28" B 6" P lb lb 38" 38"
Expert Solution
steps

Step by step

Solved in 4 steps with 3 images

Blurred answer
Knowledge Booster
Basic Mechanics Problems
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
International Edition---engineering Mechanics: St…
International Edition---engineering Mechanics: St…
Mechanical Engineering
ISBN:
9781305501607
Author:
Andrew Pytel And Jaan Kiusalaas
Publisher:
CENGAGE L