There are n cities numbered from 0 to n-1. Given the array edges where edges[i] = [fromi, toi, weighti] represents a bidirectional and weighted edge between cities fromi and toi, and given the integer distanceThreshold. Return the city with the smallest number of cities that are reachable through some path and whose distance is at most distanceThreshold, If there are multiple such cities, return the city with the greatest number. Notice that the distance of a path connecting cities i and j is equal to the sum of the edges' weights along that path. Constraints: 2 <= n <= 100 1 <= edges.length <= n * (n - 1) / 2 edges[i].length == 3 0 <= fromi < toi < n 1 <= weighti, distanceThreshold <= 10^4 All pairs (fromi, toi) are distinct. Function definition for Java:  public int findTheCity(int n, int[][] edges, int distanceThreshold) {            } Function definition for Python: def findTheCity(self, n: int, edges: List[List[int]], distanceThreshold: int) -> int:   #Your code here Announced Test Cases:   Test Case 1:Input: n = 4, edges = [[0,1,3],[1,2,1],[1,3,4],[2,3,1]], distanceThreshold = 4 Output: 3 Explanation: The figure above describes the graph.  The neighboring cities at a distanceThreshold = 4 for each city are: City 0 -> [City 1, City 2]  City 1 -> [City 0, City 2, City 3]  City 2 -> [City 0, City 1, City 3]  City 3 -> [City 1, City 2]  Cities 0 and 3 have 2 neighboring cities at a distanceThreshold = 4, but we have to return city 3 since it has the greatest number.   Test Case 2:Input: n = 5, edges = [[0,1,2],[0,4,8],[1,2,3],[1,4,2],[2,3,1],[3,4,1]], distanceThreshold = 2 Output: 0 Explanation: The figure above describes the graph.  The neighboring cities at a distanceThreshold = 2 for each city are: City 0 -> [City 1]  City 1 -> [City 0, City 4]  City 2 -> [City 3, City 4]  City 3 -> [City 2, City 4] City 4 -> [City 1, City 2, City 3]  The city 0 has 1 neighboring city at a distanceThreshold = 2   please write code in java and python

icon
Related questions
Question

There are n cities numbered from 0 to n-1. Given the array edges where edges[i] = [fromi, toi, weighti] represents a bidirectional and weighted edge between cities fromi and toi, and given the integer distanceThreshold.

Return the city with the smallest number of cities that are reachable through some path and whose distance is at most distanceThreshold, If there are multiple such cities, return the city with the greatest number.

Notice that the distance of a path connecting cities i and j is equal to the sum of the edges' weights along that path.

Constraints:

  • 2 <= n <= 100
  • 1 <= edges.length <= n * (n - 1) / 2
  • edges[i].length == 3
  • 0 <= fromi < toi < n
  • 1 <= weighti, distanceThreshold <= 10^4
  • All pairs (fromi, toi) are distinct.

Function definition for Java: 

public int findTheCity(int n, int[][] edges, int distanceThreshold) {

       

    }
Function definition for Python:
def findTheCity(self, n: int, edges: List[List[int]], distanceThreshold: int) -> int:
  #Your code here



Announced Test Cases:

 

Test Case 1:

Input: n = 4, edges = [[0,1,3],[1,2,1],[1,3,4],[2,3,1]], distanceThreshold = 4 Output: 3 Explanation: The figure above describes the graph.  The neighboring cities at a distanceThreshold = 4 for each city are: City 0 -> [City 1, City 2]  City 1 -> [City 0, City 2, City 3]  City 2 -> [City 0, City 1, City 3]  City 3 -> [City 1, City 2]  Cities 0 and 3 have 2 neighboring cities at a distanceThreshold = 4, but we have to return city 3 since it has the greatest number.
 
Test Case 2:

Input: n = 5, edges = [[0,1,2],[0,4,8],[1,2,3],[1,4,2],[2,3,1],[3,4,1]], distanceThreshold = 2 Output: 0 Explanation: The figure above describes the graph.  The neighboring cities at a distanceThreshold = 2 for each city are: City 0 -> [City 1]  City 1 -> [City 0, City 4]  City 2 -> [City 3, City 4]  City 3 -> [City 2, City 4] City 4 -> [City 1, City 2, City 3]  The city 0 has 1 neighboring city at a distanceThreshold = 2
 
please write code in java and python 
Expert Solution
steps

Step by step

Solved in 2 steps with 1 images

Blurred answer