Skip to main content
Question

Using Basic Integration Rules :- , use the basic integration rules to find or evaluate the integral ?

see the  equation as attached here :-

 

 

 

(x + 8
dx
csc
4
expand button
Transcribed Image Text:(x + 8 dx csc 4
Expert Solution

Want to see the full answer?

Check out a sample Q&A here
Blurred answer
Students who’ve seen this question also like:
Calculus: Early Transcendentals
Calculus: Early Transcendentals
8th Edition
ISBN: 9781285741550
Author: James Stewart
Publisher: Cengage Learning
Not helpful? See similar books
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Functions And Models. 1RCC
marketing sidebar icon
Want to see this answer and more?
Experts are waiting 24/7 to provide step-by-step solutions in as fast as 30 minutes!*
*Response times may vary by subject and question complexity. Median response time is 34 minutes for paid subscribers and may be longer for promotional offers.

Related Calculus Q&A

Find answers to questions asked by students like you.

Q: ч.) -17x° - 4 x + 3) ·dx

A: Click to see the answer

Q: +ェ-4 dx x2 +2

A: Click to see the answer

Q: (x² +2x-2)dx 3

A: Click to see the answer

Q: (3x) dx 2 x2

A: Note: Since you have posted two questions. As per your comment we are solving the question first.…

Q: .2 x² + 6x dx (х2 + 3)?

A: Recall: ∫1x2+a2dx =1atan-1xa+C ∫ax+bndx =1a.ax+bn+1n+1+C

Q: Зх-2 dx%3D V2x+3

A: We need to evaluate the following integral I = ∫3x-22x+3dx                            ........1

Q: x2 dx 1-2x3

A: Since you have asked multiple questions, I will solve the first question for you. If you want…

Q: 2.) xe" dx 8.

A: Given query is to find integral converges or diverges.

Q: 1 dx x2 -4

A: Click to see the answer

Q: -7 dx (x – 2)(x2 + 4)

A: Click to see the answer

Q: x2 -x + 14 dx (x +2)(x² + 4)

A: We  have to find solution

Q: x3 dx 10. x2 + 2)

A: As we know that the Power Rule: ∫xndx=xn+1n+1+C ; n≠-1 And ∫1ax+bdx=1alnax+b+b From the given…

Q: 2x* - X* dx 「奈 3. スx* + 1

A: Click to see the answer

Q: 10a3 5.) dx 1 – x8 -

A: Click to see the answer

Q: 3x dx Vx² - 12.x+5

A: To find the integration (3x/√(x²-12x+5))dx

Q: 3x dx Vx² - 12.x+5

A: Click to see the answer

Q: 5 dx is: V4-x2

A: Given:  Let I=∫54-x2 dx To Find: To evaluate the given integral.

Q: Evaluate:

A: Click to see the answer

Q: -2 (x – 1)(7x + 7) dx = 2.

A: Click to see the answer

Q: x4 dx. х — 1

A: Click to see the answer

Q: 1 dx (x²)vx2-9

A: We have to find the integration

Q: 1 dx x2+3x+2

A: To solve∫1x2+3x+2dx

Q: -7sin (x)dx = %3D

A: Click to see the answer

Q: 23 dx V25 – x2

A: We integrate the function using trigonometry substitution.

Q: V 4 + x2 dx

A: Click to see the answer

Q: 10 x2+3 dx 4

A: Explanation of the answer is as follows

Q: 1 dx 9 - x2

A: Click to see the answer

Q: 4- x²+4 dx ht. 23

A: To evaluate∫x3x2+4dx We can find the integral by substitution method.

Q: -2 х 6. dx 1-x

A: Topic = Integration use ∫1xdx=lnx+Clnx⇒x is NOT defined for negative values of the independent…

Q: 4. x2 - 3x 4 dx |

A: 4). To evaluate the integral: ∫xx2-3x-4dx Solution: Integrand can be simplified as:…

Q: 10. x3 Vx² –- 1 dx

A: Click to see the answer

Q: ,2 3 csc- x dx 1. /1–4cot2.

A: Our guidelines we are supposed to answer only one question. Kindly repost other question as the next…

Q: Integration Evaluate the following integrals.

A: Given integral, ∫9x2+x+213x2+72dxwe have to evaluate the given integral

Q: Use the definition of a definite integral to evaluate the function. You may use either left or right…

A: Click to see the answer

Q: Find the indefinite integral and check the result by differentiation

A: Given: Let I=∫5x 1-x23 dx To Find: To evaluate the given integration and to check the result by…

Q: dx 3. (x+2)Vx+1

A: Click to see the answer

Q: (メyーx+24 -2) dx- (x+ 4x) 0

A: Click to see the answer

Q: 1 dx %3D x-3V2x-4+2

A: Click to see the answer

Q: хе xe-X dx 4.

A: Consider the integral. I=∫04xe-xdx

Q: Væ2 – 1 -dx 30. x2

A: Click to see the answer

Q: 4 dx x2 + 4

A: Given function to integrate ∫x4x2+4dx Apply long division, ∫x4x2+4dx=∫16x2+4+x2-4dx Apply linearity…

Knowledge Booster
Calculus
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Recommended textbooks for you
  • Calculus: Early Transcendentals
    Calculus
    ISBN:9781285741550
    Author:James Stewart
    Publisher:Cengage Learning
    Thomas' Calculus (14th Edition)
    Calculus
    ISBN:9780134438986
    Author:Joel R. Hass, Christopher E. Heil, Maurice D. Weir
    Publisher:PEARSON
    Calculus: Early Transcendentals (3rd Edition)
    Calculus
    ISBN:9780134763644
    Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
    Publisher:PEARSON
  • Calculus: Early Transcendentals
    Calculus
    ISBN:9781319050740
    Author:Jon Rogawski, Colin Adams, Robert Franzosa
    Publisher:W. H. Freeman
    Precalculus
    Calculus
    ISBN:9780135189405
    Author:Michael Sullivan
    Publisher:PEARSON
    Calculus: Early Transcendental Functions
    Calculus
    ISBN:9781337552516
    Author:Ron Larson, Bruce H. Edwards
    Publisher:Cengage Learning
  • Calculus: Early Transcendentals
    Calculus
    ISBN:9781285741550
    Author:James Stewart
    Publisher:Cengage Learning
    Thomas' Calculus (14th Edition)
    Calculus
    ISBN:9780134438986
    Author:Joel R. Hass, Christopher E. Heil, Maurice D. Weir
    Publisher:PEARSON
    Calculus: Early Transcendentals (3rd Edition)
    Calculus
    ISBN:9780134763644
    Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
    Publisher:PEARSON
    Calculus: Early Transcendentals
    Calculus
    ISBN:9781319050740
    Author:Jon Rogawski, Colin Adams, Robert Franzosa
    Publisher:W. H. Freeman
    Precalculus
    Calculus
    ISBN:9780135189405
    Author:Michael Sullivan
    Publisher:PEARSON
    Calculus: Early Transcendental Functions
    Calculus
    ISBN:9781337552516
    Author:Ron Larson, Bruce H. Edwards
    Publisher:Cengage Learning