   Chapter 11.10, Problem 9E

Chapter
Section
Textbook Problem

# Use the definition of a Taylor series to find the first four nonzero terms of the series for f(x) centered at the given value of a.9. f(x) = sin x, a = π/6

To determine

To find: The first four nonzero terms of the series for f(x) centered at π6 .

Explanation

Result used:

If f has a power series expansion at a , f(x)=n=0f(n)(a)n!(xa)n , f(x)=f(a)+f(a)1!(xa)+f(a)2!(xa)2+f(a)3!(xa)3+

Calculation:

Consider the function f(x)=sinx centered at a=π6 .

Obtain the first four nonzero terms of the series as follows,

The function f(x)=sinx at a=π6 is computed as follows,

f(π6)=sin(π6)=12

That is, f(π6)=12 .

The first derivative of f(x) at a=π6 is computed as follows,

f(x)=ddx(sinx)=cosx

f(x)=cosx (1)

Substitute at π6 .for x,

f(π6)=cos(π6)=32

That is, f(π6)=32 .

The second derivative of f(x) at a=π6 is computed as follows,

f(2)(x)=d2dx2(f(x))=ddx(f(x))=ddx(cosx)    (by equation(1))

f(2)(x)=sinx (2)

Substitute at π6 .for x,

f(2)(π6)=sin(π6)

That is, f(2)(2)=12

The third derivative of f(x) at a=π6 is computed as follows,

f(3)(x)=d3dx3(f(x))=ddx(f(2)(x))=ddx(sinx)   (by equation(2))=cosx

Substitute at π6

### Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

#### The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started

#### Solve the equations in Exercises 126. x69x4=0

Finite Mathematics and Applied Calculus (MindTap Course List)

#### In Exercises 4562, find the values of x that satisfy the inequality (inequalities). 59. x+3x20

Applied Calculus for the Managerial, Life, and Social Sciences: A Brief Approach

#### True or False: converges.

Study Guide for Stewart's Single Variable Calculus: Early Transcendentals, 8th 