BuyFindarrow_forward

Multivariable Calculus

8th Edition
James Stewart
ISBN: 9781305266643

Solutions

Chapter
Section
BuyFindarrow_forward

Multivariable Calculus

8th Edition
James Stewart
ISBN: 9781305266643
Textbook Problem

Find the vectors T, N, and B at the given point.

48. r(t) = ⟨cos t, sin t, ln cos t⟩, (1, 0, 0)

To determine

To find: The vectors T, N, and B of vector function r(t)=cost,sint,lncost at point (1,0,0) .

Explanation

Given data:

Vector function r(t)=cost,sint,lncost and point (1,0,0) .

Formula used:

Write the expression for tangent vector of a vector function r(t) (T(t)) .

T(t)=r(t)|r(t)| (1)

Here,

r(t) is first derivative of function r(t) .

Write the expression for normal vector of vector function r(t) (N(t)) .

N(t)=T(t)|T(t)| (2)

Here,

T(t) is first derivative of tangent function.

Write the expression for binormal vector of vector function r(t) (B(t)) .

B(t)=T(t)×N(t) (3)

Consider the two three-dimensional vector functions such as u(t)=u1(t),u2(t),u3(t) and v(t)=v1(t),v2(t),v3(t) .

Cross product of vectors:

Write the expression for cross product of vectors u(t) and v(t) (u(t)×v(t)) .

u(t)×v(t)=|ijku1(t)u2(t)u3(t)v1(t)v2(t)v3(t)|=[(u2(t)v3(t)v2(t)u3(t))],[(u1(t)v3(t)v1(t)u3(t))],[(u1(t)v2(t)v1(t)u2(t))]

Write the expression for magnitude of vector a (|a|) .

|a|=a12+a22+a32

Here,

a1 , a2 and a3 are the x, y, and z-coordinates of vector respectively.

Write the vector function.

r(t)=cost,sint,lncost (4)

Equate the components of r(t) with point (1,0,0) .

cost=1t=cos1(1)t=0

sint=0t=sin1(0)t=0

Hence, the value of t is 0.

Apply differentiation with respect to t on both sides of equation (4).

r(t)=ddtcost,sint,lncost=ddt(cost),ddt(sint),ddt(lncost)=sint,cost,1cost(sint){ddx(cosx)=sinx,ddx(lnx)=1x,ddx(sinx)=cosx}=sint,cost,tant

Find the value of |r(t)| .

|r(t)|=(sint)2+(cost)2+(tant)2=sin2t+cos2t+tan2t=1+tan2t{sin2x+cos2x=1}=sec2t{1+tan2x=sec2x}

|r(t)|=sect

Substitute sint,cost,tant for r(t) and sect for |r(t)| in equation (1),

T(t)=sint,cost,tantsect=sintsect,costsect,tantsect=sint(1cost),cost(1cost),(sintcost)(1cost){secx=1cosx}

T(t)=sintcost,cos2t,sint (5)

Substitute 0 for t,

T(0)=sin(0)cos(0),cos2(0),sin(0)=(0)(1),12,0=0,1,0

Apply differentiation with respect to t on both sides of equation (5)

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started

Chapter 13 Solutions

Show all chapter solutions add
Sect-13.1 P-11ESect-13.1 P-12ESect-13.1 P-13ESect-13.1 P-14ESect-13.1 P-15ESect-13.1 P-16ESect-13.1 P-17ESect-13.1 P-18ESect-13.1 P-19ESect-13.1 P-20ESect-13.1 P-21ESect-13.1 P-22ESect-13.1 P-23ESect-13.1 P-24ESect-13.1 P-25ESect-13.1 P-26ESect-13.1 P-27ESect-13.1 P-28ESect-13.1 P-29ESect-13.1 P-30ESect-13.1 P-31ESect-13.1 P-32ESect-13.1 P-38ESect-13.1 P-39ESect-13.1 P-40ESect-13.1 P-41ESect-13.1 P-42ESect-13.1 P-43ESect-13.1 P-44ESect-13.1 P-45ESect-13.1 P-46ESect-13.1 P-49ESect-13.1 P-50ESect-13.1 P-53ESect-13.2 P-1ESect-13.2 P-2ESect-13.2 P-3ESect-13.2 P-4ESect-13.2 P-5ESect-13.2 P-6ESect-13.2 P-7ESect-13.2 P-8ESect-13.2 P-9ESect-13.2 P-10ESect-13.2 P-11ESect-13.2 P-12ESect-13.2 P-13ESect-13.2 P-14ESect-13.2 P-15ESect-13.2 P-16ESect-13.2 P-17ESect-13.2 P-18ESect-13.2 P-19ESect-13.2 P-20ESect-13.2 P-21ESect-13.2 P-22ESect-13.2 P-23ESect-13.2 P-24ESect-13.2 P-25ESect-13.2 P-26ESect-13.2 P-27ESect-13.2 P-28ESect-13.2 P-29ESect-13.2 P-30ESect-13.2 P-31ESect-13.2 P-32ESect-13.2 P-33ESect-13.2 P-34ESect-13.2 P-35ESect-13.2 P-36ESect-13.2 P-37ESect-13.2 P-38ESect-13.2 P-39ESect-13.2 P-40ESect-13.2 P-41ESect-13.2 P-42ESect-13.2 P-43ESect-13.2 P-44ESect-13.2 P-45ESect-13.2 P-46ESect-13.2 P-47ESect-13.2 P-48ESect-13.2 P-49ESect-13.2 P-50ESect-13.2 P-51ESect-13.2 P-52ESect-13.2 P-53ESect-13.2 P-54ESect-13.2 P-55ESect-13.2 P-56ESect-13.2 P-57ESect-13.2 P-58ESect-13.3 P-1ESect-13.3 P-2ESect-13.3 P-3ESect-13.3 P-4ESect-13.3 P-5ESect-13.3 P-6ESect-13.3 P-7ESect-13.3 P-8ESect-13.3 P-9ESect-13.3 P-10ESect-13.3 P-11ESect-13.3 P-12ESect-13.3 P-13ESect-13.3 P-14ESect-13.3 P-15ESect-13.3 P-16ESect-13.3 P-17ESect-13.3 P-18ESect-13.3 P-19ESect-13.3 P-20ESect-13.3 P-21ESect-13.3 P-22ESect-13.3 P-23ESect-13.3 P-24ESect-13.3 P-25ESect-13.3 P-26ESect-13.3 P-27ESect-13.3 P-28ESect-13.3 P-29ESect-13.3 P-30ESect-13.3 P-31ESect-13.3 P-32ESect-13.3 P-33ESect-13.3 P-38ESect-13.3 P-39ESect-13.3 P-42ESect-13.3 P-43ESect-13.3 P-44ESect-13.3 P-45ESect-13.3 P-46ESect-13.3 P-47ESect-13.3 P-48ESect-13.3 P-49ESect-13.3 P-50ESect-13.3 P-53ESect-13.3 P-55ESect-13.3 P-56ESect-13.3 P-58ESect-13.3 P-59ESect-13.3 P-60ESect-13.3 P-62ESect-13.3 P-63ESect-13.3 P-64ESect-13.3 P-65ESect-13.3 P-66ESect-13.3 P-67ESect-13.4 P-1ESect-13.4 P-3ESect-13.4 P-4ESect-13.4 P-5ESect-13.4 P-6ESect-13.4 P-7ESect-13.4 P-8ESect-13.4 P-9ESect-13.4 P-10ESect-13.4 P-11ESect-13.4 P-12ESect-13.4 P-13ESect-13.4 P-14ESect-13.4 P-15ESect-13.4 P-16ESect-13.4 P-19ESect-13.4 P-20ESect-13.4 P-21ESect-13.4 P-22ESect-13.4 P-23ESect-13.4 P-24ESect-13.4 P-25ESect-13.4 P-26ESect-13.4 P-27ESect-13.4 P-28ESect-13.4 P-29ESect-13.4 P-30ESect-13.4 P-31ESect-13.4 P-32ESect-13.4 P-34ESect-13.4 P-35ESect-13.4 P-36ESect-13.4 P-37ESect-13.4 P-38ESect-13.4 P-39ESect-13.4 P-40ESect-13.4 P-41ESect-13.4 P-42ESect-13.4 P-44ESect-13.4 P-45ESect-13.4 P-46ECh-13 P-1RCCCh-13 P-2RCCCh-13 P-3RCCCh-13 P-4RCCCh-13 P-5RCCCh-13 P-6RCCCh-13 P-7RCCCh-13 P-8RCCCh-13 P-9RCCCh-13 P-1RQCh-13 P-2RQCh-13 P-3RQCh-13 P-4RQCh-13 P-5RQCh-13 P-6RQCh-13 P-7RQCh-13 P-8RQCh-13 P-9RQCh-13 P-10RQCh-13 P-11RQCh-13 P-12RQCh-13 P-13RQCh-13 P-14RQCh-13 P-1RECh-13 P-2RECh-13 P-3RECh-13 P-4RECh-13 P-5RECh-13 P-6RECh-13 P-7RECh-13 P-8RECh-13 P-9RECh-13 P-10RECh-13 P-11RECh-13 P-12RECh-13 P-13RECh-13 P-14RECh-13 P-15RECh-13 P-16RECh-13 P-17RECh-13 P-18RECh-13 P-19RECh-13 P-20RECh-13 P-21RECh-13 P-22RECh-13 P-23RECh-13 P-1PCh-13 P-2PCh-13 P-3PCh-13 P-4PCh-13 P-5PCh-13 P-6PCh-13 P-7PCh-13 P-8PCh-13 P-9P

Additional Math Solutions

Find more solutions based on key concepts

Show solutions add

Radicals and Exponents Evaluate each expression. 24. (a) 2813 (b) 1825 (c) 1249

Precalculus: Mathematics for Calculus (Standalone Book)

Find the distance between the points (-2, 1) and (2, 4).

Calculus: An Applied Approach (MindTap Course List)

Find a formula for the inverse of the function. 25. y = ln(x + 3)

Single Variable Calculus: Early Transcendentals, Volume I

Find the constants m and b in the linear function f(x) = mx + b such that f(2) = 4 and the straight line repres...

Applied Calculus for the Managerial, Life, and Social Sciences: A Brief Approach

Divide: 270+9

Elementary Technical Mathematics

The graph of f(x) = 3x5 − 5x3 is:

Study Guide for Stewart's Single Variable Calculus: Early Transcendentals, 8th

Name the four components of a mathematical system.

Elementary Geometry for College Students