Math

CalculusCalculus: Early TranscendentalsUse Green’s Theorem in the form of Equation 13 to prove Green’s first identity: ∬ D f ∇ 2 g d A = ∮ C f ( ∇ g ) ⋅ n d s − ∬ D ∇ f ⋅ ∇ g d A where D and C satisfy the hypotheses of Green’s Theorem and the appropriate partial derivatives of f and g exist and arc continuous. (The quantity ∇ g · n = D n g occurs in the line integral. This is the directional derivative in the direction of the normal vector n and is called the normal derivative of g .)BuyFind*arrow_forward*

8th Edition

James Stewart

Publisher: Cengage Learning

ISBN: 9781285741550

Chapter 16.5, Problem 33E

Textbook Problem

Use Green’s Theorem in the form of Equation 13 to prove **Green’s first identity:**

where *D* and *C* satisfy the hypotheses of Green’s Theorem and the appropriate partial derivatives of *f* and *g* exist and arc continuous. (The quantity ∇*g* · **n** = *D _{n} g* occurs in the line integral. This is the directional derivative in the direction of the normal vector

Calculus: Early Transcendentals

Show all chapter solutions

Ch. 16.1 - Sketch the vector field F by drawing a diagram...Ch. 16.1 - Sketch the vector field F by drawing a diagram...Ch. 16.1 - Sketch the vector field F by drawing a diagram...Ch. 16.1 - Sketch the vector field F by drawing a diagram...Ch. 16.1 - Sketch the vector field F by drawing a diagram...Ch. 16.1 - Sketch the vector field F by drawing a diagram...Ch. 16.1 - Sketch the vector field F by drawing a diagram...Ch. 16.1 - Sketch the vector field F by drawing a diagram...Ch. 16.1 - Sketch the vector field F by drawing a diagram...Ch. 16.1 - Sketch the vector field F by drawing a diagram...

Ch. 16.1 - Match the vector fields F with the plots labeled...Ch. 16.1 - Match the vector fields F with the plots labeled...Ch. 16.1 - Match the vector fields F with the plots labeled...Ch. 16.1 - Match the vector fields F with the plots labeled...Ch. 16.1 - Match the vector fields F on 3 with the plots...Ch. 16.1 - Match the vector fields F on 3 with the plots...Ch. 16.1 - Match the vector fields F on 3 with the plots...Ch. 16.1 - Match the vector fields F on 3 with the plots...Ch. 16.1 - Find the gradient vector field of f. 21. f(x, y) =...Ch. 16.1 - Find the gradient vector field of f. 22. f(s, t) =...Ch. 16.1 - Find the gradient vector field of f. 23. f(x, y,...Ch. 16.1 - Find the gradient vector field of f. 24. f(x, y,...Ch. 16.1 - Find the gradient vector field f of f and sketch...Ch. 16.1 - Find the gradient vector field f of f and sketch...Ch. 16.1 - Match the functions f with the plots of their...Ch. 16.1 - Match the functions f with the plots of their...Ch. 16.1 - Match the functions f with the plots of their...Ch. 16.1 - Match the functions f with the plots of their...Ch. 16.1 - A particle moves in a velocity field V(x, y) = x2,...Ch. 16.1 - At time t = 1, a particle is located at position...Ch. 16.1 - The flow lines (or streamlines) of a vector field...Ch. 16.1 - (a) Sketch the vector field F(x, y) = i + x j and...Ch. 16.2 - Evaluate the line integral, where C is the given...Ch. 16.2 - Evaluate the line integral, where C is the given...Ch. 16.2 - Evaluate the line integral, where C is the given...Ch. 16.2 - Evaluate the line integral, where C is the given...Ch. 16.2 - Evaluate the line integral, where C is the given...Ch. 16.2 - Evaluate the line integral, where C is the given...Ch. 16.2 - Evaluate the line integral, where C is the given...Ch. 16.2 - Evaluate the line integral, where C is the given...Ch. 16.2 - Evaluate the line integral, where C is the given...Ch. 16.2 - Evaluate the line integral, where C is the given...Ch. 16.2 - Evaluate the line integral, where C is the given...Ch. 16.2 - Evaluate the line integral, where C is the given...Ch. 16.2 - Evaluate the line integral, where C is the given...Ch. 16.2 - Evaluate the line integral, where C is the given...Ch. 16.2 - Evaluate the line integral, where C is the given...Ch. 16.2 - Evaluate the line integral, where C is the given...Ch. 16.2 - Let F be the vector field shown in the figure. (a)...Ch. 16.2 - The figure shows a vector field F and two curves...Ch. 16.2 - Evaluate the line integral C F dr, where C is...Ch. 16.2 - Evaluate the line integral C F dr, where C is...Ch. 16.2 - Evaluate the line integral C F dr, where C is...Ch. 16.2 - Evaluate the line integral C F dr, where C is...Ch. 16.2 - Use a calculator to evaluate the line integral...Ch. 16.2 - Use a calculator to evaluate the line integral...Ch. 16.2 - Use a calculator to evaluate the line integral...Ch. 16.2 - Use a calculator to evaluate the line integral...Ch. 16.2 - Find the exact value of C x3y2 z ds, where C is...Ch. 16.2 - (a) Find the work done by the force field F(x, y)...Ch. 16.2 - A thin wire is bent into the shape of a semicircle...Ch. 16.2 - A thin wire has the shape of the first-quadrant...Ch. 16.2 - (a) Write the formulas similar to Equations 4 for...Ch. 16.2 - Find the mass and center of mass of a wire in the...Ch. 16.2 - If a wire with linear density (x, y) lies along a...Ch. 16.2 - If a wire with linear density (x, y, z) lies along...Ch. 16.2 - Find the work done by the force field F(x, y) = x...Ch. 16.2 - Find the work done by the force field F(x, y) = x2...Ch. 16.2 - Find the work done by the force field F(x, y, z) =...Ch. 16.2 - The force exerted by an electric charge at the...Ch. 16.2 - The position of an object with mass m at time t is...Ch. 16.2 - An object with mass m moves with position function...Ch. 16.2 - A 160-lb man carries a 25-lb can of paint up a...Ch. 16.2 - Suppose there is a hole in the can of paint in...Ch. 16.2 - (a) Show that a constant force field does zero...Ch. 16.2 - The base of a circular fence with radius 10 m is...Ch. 16.2 - If C is a smooth curve given by a vector function...Ch. 16.2 - If C is a smooth curve given by a vector function...Ch. 16.2 - An object moves along the curve C shown in the...Ch. 16.2 - Experiments show that a steady current I in a long...Ch. 16.3 - The figure shows a curve C and a contour map of a...Ch. 16.3 - A table of values of a function f with continuous...Ch. 16.3 - Determine whether or not F is a conservative...Ch. 16.3 - Determine whether or not F is a conservative...Ch. 16.3 - Determine whether or not F is a conservative...Ch. 16.3 - Determine whether or not F is a conservative...Ch. 16.3 - Determine whether or not F is a conservative...Ch. 16.3 - Determine whether or not F is a conservative...Ch. 16.3 - Determine whether or not F is a conservative...Ch. 16.3 - Determine whether or not F is a conservative...Ch. 16.3 - The figure shows the vector field F(x, y) = 2xy,...Ch. 16.3 - (a) Find a function f such that F = f and (b) use...Ch. 16.3 - (a) Find a function f such that F = f and (b) use...Ch. 16.3 - (a) Find a function f such that F = f and (b) use...Ch. 16.3 - (a) Find a function f such that F = f and (b) use...Ch. 16.3 - (a) Find a function f such that F = f and (b) use...Ch. 16.3 - (a) Find a function f such that F = f and (b) use...Ch. 16.3 - (a) Find a function f such that F = f and (b) use...Ch. 16.3 - Show that the line integral is independent of path...Ch. 16.3 - Show that the line integral is independent of path...Ch. 16.3 - Suppose youre asked to determine the curve that...Ch. 16.3 - Suppose an experiment determines that the amount...Ch. 16.3 - Find the work done by the force field F in moving...Ch. 16.3 - Find the work done by the force field F in moving...Ch. 16.3 - Is the vector field shown in the figure...Ch. 16.3 - Is the vector field shown in the figure...Ch. 16.3 - Let F = f, where f(x, y) = sin(x 2y). Find...Ch. 16.3 - Show that if the vector field F = P i + Q j + R k...Ch. 16.3 - Use Exercise 29 to show that the line integral C y...Ch. 16.3 - Determine whether or not the given set is (a)...Ch. 16.3 - Determine whether or not the given set is (a)...Ch. 16.3 - Determine whether or not the given set is (a)...Ch. 16.3 - Determine whether or not the given set is (a)...Ch. 16.3 - Let F(x, y) = yi+xjx2+y2 (a) Show that P/y=Q/x....Ch. 16.4 - Evaluate the line integral by two methods: (a)...Ch. 16.4 - Evaluate the line integral by two methods: (a)...Ch. 16.4 - Evaluate the line integral by two methods: (a)...Ch. 16.4 - Evaluate the line integral by two methods: (a)...Ch. 16.4 - Use Greens Theorem to evaluate the line integral...Ch. 16.4 - Use Greens Theorem to evaluate the line integral...Ch. 16.4 - Use Greens Theorem to evaluate the line integral...Ch. 16.4 - Use Greens Theorem to evaluate the line integral...Ch. 16.4 - Use Greens Theorem to evaluate the line integral...Ch. 16.4 - Use Greens Theorem to evaluate the line integral...Ch. 16.4 - Use Greens Theorem to evaluate C F dr. (Check the...Ch. 16.4 - Use Greens Theorem to evaluate C F dr. (Check the...Ch. 16.4 - Use Greens Theorem to evaluate C F dr. (Check the...Ch. 16.4 - Use Greens Theorem to evaluate C F dr. (Check the...Ch. 16.4 - Use Greens Theorem to find the work done by the...Ch. 16.4 - A particle starts at the origin, moves along the...Ch. 16.4 - Use one of the formulas in (5) to find the area...Ch. 16.4 - If a circle C with radius 1 rolls along the...Ch. 16.4 - (a) If C is the line segment connecting the point...Ch. 16.4 - Let D be a region bounded by a simple closed path...Ch. 16.4 - Use Exercise 22 to find the centroid of a...Ch. 16.4 - Use Exercise 22 to find the centroid of the...Ch. 16.4 - A plane lamina with constant density (x, y) = ...Ch. 16.4 - Use Exercise 25 to find the moment of inertia of a...Ch. 16.4 - Use the method of Example 5 to calculate C F dr,...Ch. 16.4 - Calculate C F dr, where F(x, y) = x2 + y, 3x y2...Ch. 16.4 - If F is the vector field of Example 5, show that C...Ch. 16.4 - Complete the proof of the special case of Greens...Ch. 16.4 - Use Greens Theorem to prove the change of...Ch. 16.5 - Find (a) the curl and (b) the divergence of the...Ch. 16.5 - Find (a) the curl and (b) the divergence of the...Ch. 16.5 - Find (a) the curl and (b) the divergence of the...Ch. 16.5 - Find (a) the curl and (b) the divergence of the...Ch. 16.5 - Find (a) the curl and (b) the divergence of the...Ch. 16.5 - Find (a) the curl and (b) the divergence of the...Ch. 16.5 - Find (a) the curl and (b) the divergence of the...Ch. 16.5 - Find (a) the curl and (b) the divergence of the...Ch. 16.5 - The vector field F is shown in the xy-plane and...Ch. 16.5 - The vector field F is shown in the xy-plane and...Ch. 16.5 - The vector field F is shown in the xy-plane and...Ch. 16.5 - Let f be a scalar field and F a vector field....Ch. 16.5 - Determine whether or not the vector field is...Ch. 16.5 - Determine whether or not the vector field is...Ch. 16.5 - Determine whether or not the vector field is...Ch. 16.5 - Determine whether or not the vector field is...Ch. 16.5 - Determine whether or not the vector field is...Ch. 16.5 - Determine whether or not the vector field is...Ch. 16.5 - Is there a vector field G on 3 such that curl G =...Ch. 16.5 - Is there a vector field G on 3 such that curl G =...Ch. 16.5 - Show that any vector field of the form F(x, y, z)...Ch. 16.5 - Show that any vector field of the form F(x, y, z)...Ch. 16.5 - Prove the identity, assuming that the appropriate...Ch. 16.5 - Prove the identity, assuming that the appropriate...Ch. 16.5 - Prove the identity, assuming that the appropriate...Ch. 16.5 - Prove the identity, assuming that the appropriate...Ch. 16.5 - Prove the identity, assuming that the appropriate...Ch. 16.5 - Prove the identity, assuming that the appropriate...Ch. 16.5 - Prove the identity, assuming that the appropriate...Ch. 16.5 - Let r = x i + y j + z k and r = |r|. 30. Verify...Ch. 16.5 - Let r = x i + y j + z k and r = |r|. 31. Verify...Ch. 16.5 - Let r = x i + y j + z k and r = |r|. 32. If F =...Ch. 16.5 - Use Greens Theorem in the form of Equation 13 to...Ch. 16.5 - Use Greens first identity (Exercise 33) to prove...Ch. 16.5 - Recall from Section 14.3 that a function g is...Ch. 16.5 - Use Greens first identity to show that if f is...Ch. 16.5 - This exercise demonstrates a connection between...Ch. 16.5 - Maxwells equations relating the electric field E...Ch. 16.5 - We have seen that all vector fields of the form F...Ch. 16.6 - Determine whether the points P and Q lie on the...Ch. 16.6 - Determine whether the points P and Q lie on the...Ch. 16.6 - Identify the surface with the given vector...Ch. 16.6 - Identify the surface with the given vector...Ch. 16.6 - Identify the surface with the given vector...Ch. 16.6 - Identify the surface with the given vector...Ch. 16.6 - Match the equations with the graphs labeled IVI...Ch. 16.6 - Match the equations with the graphs labeled IVI...Ch. 16.6 - Match the equations with the graphs labeled IVI...Ch. 16.6 - Match the equations with the graphs labeled IVI...Ch. 16.6 - Match the equations with the graphs labeled IVI...Ch. 16.6 - Match the equations with the graphs labeled IVI...Ch. 16.6 - Find a parametric representation for the surface....Ch. 16.6 - Find a parametric representation for the surface....Ch. 16.6 - Find a parametric representation for the surface....Ch. 16.6 - Find a parametric representation for the surface....Ch. 16.6 - Find a parametric representation for the surface....Ch. 16.6 - Find a parametric representation for the surface....Ch. 16.6 - Find a parametric representation for the surface....Ch. 16.6 - Find a parametric representation for the surface....Ch. 16.6 - Find parametric equations for the surface obtained...Ch. 16.6 - Find parametric equations for the surface obtained...Ch. 16.6 - Find an equation of the tangent plane to the given...Ch. 16.6 - Find an equation of the tangent plane to the given...Ch. 16.6 - Find an equation of the tangent plane to the given...Ch. 16.6 - Find an equation of the tangent plane to the given...Ch. 16.6 - Find an equation of the tangent plane to the given...Ch. 16.6 - Find an equation of the tangent plane to the given...Ch. 16.6 - Find the area of the surface. 39. The part of the...Ch. 16.6 - Find the area of the surface. 40. The part of the...Ch. 16.6 - Find the area of the surface. 41. The part of the...Ch. 16.6 - Find the area of the surface. 42. The part of the...Ch. 16.6 - Find the area of the surface. 43. The surface z =...Ch. 16.6 - Find the area of the surface. 44. The part of the...Ch. 16.6 - Find the area of the surface. 45. The part of the...Ch. 16.6 - Find the area of the surface. 46. The part of the...Ch. 16.6 - Find the area of the surface. 47. The part of the...Ch. 16.6 - Find the area of the surface. 48. The helicoid (or...Ch. 16.6 - Find the area of the surface. 49. The surface with...Ch. 16.6 - Find the area of the surface. 50. The part of the...Ch. 16.6 - If the equation of a surfaceSis z =f(x,y),...Ch. 16.6 - Find the area of the surface correct to four...Ch. 16.6 - Find the area of the surface correct to four...Ch. 16.6 - Find, to four decimal places, the area of the part...Ch. 16.6 - Find the area of the surface with vector equation...Ch. 16.6 - (a) Show that the parametric equations x...Ch. 16.6 - (a) Show that the parametric equationsx = acosh u...Ch. 16.6 - Find the area of the part of the spherex2+y2+ z2=...Ch. 16.6 - The figure shows the surface created when the...Ch. 16.6 - Find the area of the part of the spherex2+y2+ z2 =...Ch. 16.7 - LetSbe the surface of the box enclosed by the...Ch. 16.7 - A surface S consists of the cylinderx2+ y2=1, 1 z...Ch. 16.7 - LetHbe the hemispherex2+y2+ z2= 50,z 0, and...Ch. 16.7 - Suppose thatf(x, y,z)=g(), where g is a function...Ch. 16.7 - Evaluate the surface integral. 5. s (x + y + z)...Ch. 16.7 - Evaluate the surface integral. 6. s xyz dS, Sis...Ch. 16.7 - Evaluate the surface integral. 7. s y dS,Sis the...Ch. 16.7 - Evaluate the surface integral. 8.s (x2+ y2)dS, Sis...Ch. 16.7 - Evaluate the surface integral. 9. s x2yz dS, Sis...Ch. 16.7 - Evaluate the surface integral. 10. s xz dS, S is...Ch. 16.7 - Evaluate the surface integral. 11. s x dS, S is...Ch. 16.7 - Evaluate the surface integral. 12. s y dS, S is...Ch. 16.7 - Evaluate the surface integral. 13. s z2dS, S is...Ch. 16.7 - Evaluate the surface integral. 14. s y2z2 dS, S is...Ch. 16.7 - Evaluate the surface integral. 15. s x dS, S is...Ch. 16.7 - Evaluate the surface integral. 16 s y2 dS, S is...Ch. 16.7 - Evaluate the surface integral. 17. s (x2z +...Ch. 16.7 - Evaluate the surface integral. 18. s (x + y + z)...Ch. 16.7 - Evaluate the surface integral. 19. s xz dS, S is...Ch. 16.7 - Evaluate the surface integral. 20. s (x2 + y2 +...Ch. 16.7 - Evaluate the surface integral s F dS for the...Ch. 16.7 - Evaluate the surface integral s F dS for the...Ch. 16.7 - Evaluate the surface integral s F dS for the...Ch. 16.7 - Evaluate the surface integral s F dS for the...Ch. 16.7 - Evaluate the surface integral s F dS for the...Ch. 16.7 - Evaluate the surface integral s F dS for the...Ch. 16.7 - Evaluate the surface integral s F dS for the...Ch. 16.7 - Find a formula for s F dS similar to Formula 10...Ch. 16.7 - Find a formula for s F dS similar to Formula 10...Ch. 16.7 - Find the center of mass of the hemisphere x2 + y2...Ch. 16.7 - Find the mass of a thin funnel in the shape of a...Ch. 16.7 - (a) Give an integral expression for the moment of...Ch. 16.7 - Let S be the part of the sphere x2 + y2 + z2 = 25...Ch. 16.7 - A fluid has density 870 kg/m3 and flows with...Ch. 16.7 - Seawater has density 1025 kg/m3 and flows in a...Ch. 16.7 - Use Gausss Law to find the charge contained in the...Ch. 16.7 - Use Gausss Law to find the charge enclosed by the...Ch. 16.7 - The temperature at the point (x, y, z) in a...Ch. 16.7 - The temperature at a point in a ball with...Ch. 16.7 - Let F be an inverse square field, that is, |F(r) =...Ch. 16.8 - 1. A hemisphere H and a portion P of a paraboloid...Ch. 16.8 - Use Stokes Theorem to evaluate s curl F dS. 2....Ch. 16.8 - Use Stokes Theorem to evaluate s curl F dS. 3....Ch. 16.8 - Use Stokes Theorem to evaluate s curl F dS. 4....Ch. 16.8 - F(x, y, z) = xyz i + xy j + x2yz k. S consists of...Ch. 16.8 - Use Stokes Theorem to evaluate s curl F dS. 6....Ch. 16.8 - Use Stokes Theorem to evaluate c F dr. In each...Ch. 16.8 - Use Stokes Theorem to evaluate c F dr. In each...Ch. 16.8 - Use Stokes Theorem to evaluate c F dr. In each...Ch. 16.8 - Use Stokes Theorem to evaluate c F dr. In each...Ch. 16.8 - (a) Use Stokes Theorem to evaluate c F dr, where...Ch. 16.8 - (a) Use Stokes Theorem to evaluate c F dr, where...Ch. 16.8 - Verify that Stokes Theorem is true for the given...Ch. 16.8 - Verify that Stokes Theorem is true for the given...Ch. 16.8 - Verify that Stokes Theorem is true for the given...Ch. 16.8 - A particle moves along line segments from the...Ch. 16.8 - Evaluate c (y + sin x) dx + (z2 + cos y) dy + x3...Ch. 16.8 - If S is a sphere and F satisfies the hypotheses of...Ch. 16.8 - Suppose S and C satisfy the hypotheses of Stokes...Ch. 16.9 - Verify that the Divergence Theorem is true for the...Ch. 16.9 - Verify that the Divergence Theorem is true for the...Ch. 16.9 - Verify that the Divergence Theorem is true for the...Ch. 16.9 - Verify that the Divergence Theorem is true for the...Ch. 16.9 - Use the Divergence Theorem to calculate the...Ch. 16.9 - Use the Divergence Theorem to calculate the...Ch. 16.9 - Use the Divergence Theorem to calculate the...Ch. 16.9 - Use the Divergence Theorem to calculate the...Ch. 16.9 - Use the Divergence Theorem to calculate the...Ch. 16.9 - Use the Divergence Theorem to calculate the...Ch. 16.9 - Use the Divergence Theorem to calculate the...Ch. 16.9 - Use the Divergence Theorem to calculate the...Ch. 16.9 - Use the Divergence Theorem to calculate the...Ch. 16.9 - Use the Divergence Theorem to calculate the...Ch. 16.9 - Use the Divergence Theorem to evaluate s F dS,...Ch. 16.9 - Let F(x, y, z) = z tan-1(y2) i + z3 ln(x2 + 1) j +...Ch. 16.9 - A vector field F is shown. Use the interpretation...Ch. 16.9 - (a) Are the points P1 and P2 sources or sinks for...Ch. 16.9 - Verify that div E = 0 for the electric field...Ch. 16.9 - Use the Divergence Theorem to evaluate...Ch. 16.9 - Prove each identity, assuming that S and E satisfy...Ch. 16.9 - Prove each identity, assuming that S and E satisfy...Ch. 16.9 - Prove each identity, assuming that S and E satisfy...Ch. 16.9 - Prove each identity, assuming that S and E satisfy...Ch. 16.9 - Prove each identity, assuming that S and E satisfy...Ch. 16.9 - Prove each identity, assuming that S and E satisfy...Ch. 16.9 - Suppose S and E satisfy the conditions of the...Ch. 16.9 - A solid occupies a region E with surface S and is...Ch. 16 - What is a vector field? Give three examples that...Ch. 16 - (a) What is a conservative vector field? (b) What...Ch. 16 - (a) Write the definition of the line integral of a...Ch. 16 - (a) Define the line integral of a vector field F...Ch. 16 - State the Fundamental Theorem for Line Integrals.Ch. 16 - (a) What does it mean to say that C F dris...Ch. 16 - State Greens Theorem.Ch. 16 - Write expressions for the area enclosed by a curve...Ch. 16 - Suppose F is a vector field on 3. (a) Define curl...Ch. 16 - If F = P i + Q j, how do you determine whether F...Ch. 16 - (a) What is a parametric surface? What arc its...Ch. 16 - (a) Write the definition of the surface integral...Ch. 16 - (a) What is an oriented surface? Give an example...Ch. 16 - State Stokes Theorem.Ch. 16 - State the Divergence Theorem.Ch. 16 - In what ways are the Fundamental Theorem for Line...Ch. 16 - Determine whether the statement is true or false....Ch. 16 - Determine whether the statement is true or false....Ch. 16 - Determine whether the statement is true or false....Ch. 16 - Determine whether the statement is true or false....Ch. 16 - Determine whether the statement is true or false....Ch. 16 - Determine whether the statement is true or false....Ch. 16 - Determine whether the statement is true or false....Ch. 16 - Determine whether the statement is true or false....Ch. 16 - Determine whether the statement is true or false....Ch. 16 - Determine whether the statement is true or false....Ch. 16 - Determine whether the statement is true or false....Ch. 16 - Determine whether the statement is true or false....Ch. 16 - Determine whether the statement is true or false....Ch. 16 - A vector field F, a curve C, and a point P are...Ch. 16 - Evaluate the line integral. 2. C x ds, C is the...Ch. 16 - Evaluate the line integral. 3. C yz cos x ds, C: x...Ch. 16 - Evaluate the line integral. 4. C y dx + (x + y2)...Ch. 16 - Evaluate the line integral. 5. C y3 dx + x2 dy, C...Ch. 16 - Evaluate the line integral. 6. C xy dx + ey dy +...Ch. 16 - Evaluate the line integral. 7. C xy dx + y2 dy +...Ch. 16 - Evaluate the line integral. 8. C F dr, where F(x,...Ch. 16 - Evaluate the line integral. 9. C F dr, where...Ch. 16 - Find the work done by the force field F(x, y, z) =...Ch. 16 - Show that F is a conservative vector field. Then...Ch. 16 - Show that F is a conservative vector field. Then...Ch. 16 - Show that F is a conservative and use this fact to...Ch. 16 - Show that F is a conservative and use this fact to...Ch. 16 - Verify that Greens Theorem is true for the line...Ch. 16 - Use Greens Theorem to evaluate C 1+x3dx + 2xydy...Ch. 16 - Use Greens Theorem to evaluate C x2y dx xy2dy,...Ch. 16 - Find curl F and div F if F(x, y, z) = e-x sin y i...Ch. 16 - Show that there is no vector field G such that...Ch. 16 - If F and G are vector fields whose component...Ch. 16 - If C is any piecewise-smooth simple closed plane...Ch. 16 - If f and g are twice differentiable functions,...Ch. 16 - If f is a harmonic function, that is, 2f = 0, show...Ch. 16 - (a) Sketch the curve C with parametric equations x...Ch. 16 - Find the area of the part of the surface z = x2 +...Ch. 16 - Evaluate the surface integral. 27. S z dS, where S...Ch. 16 - Evaluate the surface integral. 28. s (x2z +...Ch. 16 - Evaluate the surface integral. 29. S F dS, where...Ch. 16 - Evaluate the surface integral. 30. S F dS, where...Ch. 16 - Verify that Stokes Theorem is true for the vector...Ch. 16 - Use Stokes Theorem to evaluate s curl F dS, where...Ch. 16 - Use Stokes Theorem to evaluate C F dr, where F(x,...Ch. 16 - Use the Divergence Theorem to calculate the...Ch. 16 - Verify that the Divergence Theorem is true for the...Ch. 16 - Compute the outward flux of F(x, y, z) =...Ch. 16 - Let F(x, y, z) = (3x2 yz 3y) i + (x3z 3x) j +...Ch. 16 - Let F(x, y) = (2x3+2xy22y)i+(2y3+2x2y+2x)jx2+y2...Ch. 16 - Find S F n dS, where F(x, y, z) = x i + y j + z k...Ch. 16 - If the components of F have continuous second...Ch. 16 - If a is a constant vector, r = x i + y j + z k,...Ch. 16 - 1. Let S be a smooth parametric surface and let P...Ch. 16 - Find the positively oriented simple closed curve C...Ch. 16 - Let C be a simple closed piecewise-smooth space...Ch. 16 - Prove the following identity: (F G) = (F )G + (G...Ch. 16 - The figure depicts the sequence of events in each...

Find more solutions based on key concepts

Show solutions Owning a Business You own two restaurants. From 2009 through 2015, the sales R1 (in thousands of dollars) for o...

Calculus: An Applied Approach (MindTap Course List)

Condensing a Logarithmic Expression In Exercises 99-106, write the expression as the logarithm of a single quan...

Calculus: Early Transcendental Functions

Internet Advertising Several months ago, John O'Hagan investigated the effect on the popularity of OHaganBooks....

Applied Calculus

The most general antiderivative of f(x) = x2 is F(x)=1x+C

Single Variable Calculus: Early Transcendentals, Volume I

Use implicit differentiation to find z/x and z/y. 47. x2 + 2y2 + 3z2 = 1

Multivariable Calculus

Multiplying Algebraic Expressions Perform the indicated operations and simplify. 55. (x2 a2)(x2 + a2)

Precalculus: Mathematics for Calculus (Standalone Book)

Convert each expression in Exercises 25-50 into its technology formula equivalent as in the table in the text. ...

Finite Mathematics and Applied Calculus (MindTap Course List)

What is the lowest score in the following distribution?

Essentials of Statistics for The Behavioral Sciences (MindTap Course List)

Exercises You can use the following problems as a self-test on the material presented in this review. If you ca...

Essentials Of Statistics

How do you find the vector from one point to another?

Calculus (MindTap Course List)

Find the estimated standard error for the sample mean for each of the following samples. a. n=9 with SS=1152 b....

Statistics for The Behavioral Sciences (MindTap Course List)

let f(x) = x 1, g(x) = x+1, and h(x) = 2x3 1. Find the rule for each function. 13. gh

Applied Calculus for the Managerial, Life, and Social Sciences: A Brief Approach

Graph the function by hand, not by plotting points, but by starting with the graph of one of the standard funct...

Single Variable Calculus

For Problems 5-14, please provide the following information. (a) What is the level of significance? State the n...

Understanding Basic Statistics

Let V denote rainfall volume and W denote runoff volume (both in mm). According to the article Runoff Quality A...

Probability and Statistics for Engineering and the Sciences

Find all possible real solutions of each equation in Exercises 3144. 3x6x412x2+4=0

Finite Mathematics

For Problems 55-94, simplify each numerical expression. Objectives 7 655(13)(2)+(36)12

Intermediate Algebra

In Exercises 63 to 70, state whether each of the given pairs of sets are equal, equivalent, both, or neither. {...

Mathematical Excursions (MindTap Course List)

In problem 19 -22 the graph of a function is shown in the standard viewing window. Experiment with the viewin...

Mathematical Applications for the Management, Life, and Social Sciences

Find the unknown sides of each right triangle (see Illustration 1): ILLUSTRATION 1 a=1980m,A=18.4

Elementary Technical Mathematics

For Exercises 17 to 2, See Theorem 6.3.6. Given: AB=4,BC=5,AD=3 Find: DE.

Elementary Geometry For College Students, 7e

Complete the following table. Round net price factors to five decimal places when necessary. Trade Single Disco...

Contemporary Mathematics for Business & Consumers

Estimating Limits In Exercises 14, use a graphing utility to graph the function and visually estimate the limit...

Calculus: Early Transcendental Functions (MindTap Course List)

Evaluating a Definite Integral In Exercises 77-80, evaluate the definite integral. Use a graphing utility to ve...

Calculus of a Single Variable

Use the definition of a Taylor series to find the first four nonzero terms of the series for f(x) centered at t...

Single Variable Calculus: Early Transcendentals

True or False Label each of the following statements as either true or false. There are non zero elements in a ...

Elements Of Modern Algebra

Find the remaining trigonometric functions of based on the given information. tan=3/4and terminates in QII

Trigonometry (MindTap Course List)

True or False:
If , then converge absolutely.

Study Guide for Stewart's Single Variable Calculus: Early Transcendentals, 8th

True or False:
If and , then .

Study Guide for Stewart's Multivariable Calculus, 8th

Given: l1l2l3l4,AB=5,BC=4,CD=3,EH=10 Find: EF,FG,GH See the figure for Exercise 6.

Elementary Geometry for College Students

In Exercises 11-16, find the optimal strategies, P and Q, for the row and column players, respectively. Also co...

Finite Mathematics for the Managerial, Life, and Social Sciences

Parallel PlanesIn Exercises 6164, determine whether the planes are parallel or identical. 3x2y+5z=1075x50y+125z...

Multivariable Calculus

Classifying a TriangleIn Exercises 2932, find the lengths of the sides of the triangle with the indicated verti...

Calculus (MindTap Course List)

In this chapter, we described a study in which Skjoeveland (2001) examined the effect of street parks on social...

Research Methods for the Behavioral Sciences (MindTap Course List)

Pew Research Center is a nonpartisan polling organization that provides information about issues, attitudes, an...

STATISTICS F/BUSINESS+ECONOMICS-TEXT

The report 2016 Salary Survey Executive Summary (National Association of Colleges and Employers, naceweb.org/up...

Introduction To Statistics And Data Analysis

Selection bias and individual differences are both potential problems dealing with the participants in a study....

Research Methods for the Behavioral Sciences (MindTap Course List)

There are 180 in the sum of the angles of any triangle. Prove by induction that n-2180 is the sum of the angles...

College Algebra (MindTap Course List)

A study found that, in 2005, 12.5% of U.S. workers belonged to unions (The Wall Street Journal, January 21, 200...

Statistics for Business & Economics, Revised (MindTap Course List)

For Exercises 7 through 22, compute angles to nearer minute or hundredth degree. In each of Exercises 7 through...

Mathematics For Machine Technology

In Exercises 1-18, write the given number in expanded form, or explain why there is no such number. 3908

Mathematics: A Practical Odyssey

32. A population proportion is .40. A sample of size 200 will be taken and the sample proportion will be used ...

Essentials Of Statistics For Business & Economics

Air Quality Index. The Los Angeles Times regularly reports the air quality index for various areas of Southern ...

Modern Business Statistics with Microsoft Office Excel (with XLSTAT Education Edition Printed Access Card) (MindTap Course List)

ReminderRound all answers to two decimal places unless otherwise indicated. Getting a Polynomial from PointsA p...

Functions and Change: A Modeling Approach to College Algebra (MindTap Course List)

If a, b. c, d, m, and n arc integers with n1 and if ac(modn)and bd(modn) , then a+b , ab , ab ,and am .

Discrete Mathematics With Applications

In the following Exercises, use a calculator to estimate the area under the curve using left Riemann sums with ...

Calculus Volume 2

Biology A science class performs an experiment comparing the quantity of food consumed by a species of moth wit...

College Algebra

Comparing Two Independent Population Proportions. Use the following information for the next five exercises. Tw...

Introductory Statistics

At t = 0 a sealed test tube containing a chemical is immersed in a liquid bath. The initial temperature of the ...

A First Course in Differential Equations with Modeling Applications (MindTap Course List)