BuyFindarrow_forward

Calculus: An Applied Approach (Min...

10th Edition
Ron Larson
ISBN: 9781305860919

Solutions

Chapter
Section
BuyFindarrow_forward

Calculus: An Applied Approach (Min...

10th Edition
Ron Larson
ISBN: 9781305860919
Textbook Problem
80 views

Integration by Substitution In Exercises 35–42, use the method of substitution to find the indefinite integral. Check your result by differentiating. See Examples 6 and 7.

x 2 + 1 x 3 + 3 x + 4 d x

To determine

To calculate: The indefinite integral of x2+1x3+3x+4 dx and to check the result by differentiating.

Explanation

Given Information:

The provided expression is, x2+1x3+3x+4 dx.

Formula used:

General Power Rule:

If u is a differentiable function of x, then

undudxdx=undu=un+1n+1+c,n1

The Constant Multiple Rule:

ddxcf(x)=cf(x)

The Chain Rule:

ddxf(g(x))=f(g(x))g(x)

The Power Rule:

ddxxn=nxn1

Where n is a real number.

Calculation:

Consider the expression, x2+1x3+3x+4 dx,

This can be written as (x3+3x+4)12(x2+1)dx.

Let u=x3+3x+4,

So,

du=(3x2+3) dx=3(x2+1)dx

Now use the general power rule to get,

13(u)12du

Now the integral will be:

13u12+112+1+C=13u1212+C=23u12+C

Substitute back the value of u to get,

x2+1

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started
Sect-5.1 P-3SWUSect-5.1 P-4SWUSect-5.1 P-5SWUSect-5.1 P-6SWUSect-5.1 P-7SWUSect-5.1 P-8SWUSect-5.1 P-9SWUSect-5.1 P-10SWUSect-5.1 P-1ESect-5.1 P-2ESect-5.1 P-3ESect-5.1 P-4ESect-5.1 P-5ESect-5.1 P-6ESect-5.1 P-7ESect-5.1 P-8ESect-5.1 P-9ESect-5.1 P-10ESect-5.1 P-11ESect-5.1 P-12ESect-5.1 P-13ESect-5.1 P-14ESect-5.1 P-15ESect-5.1 P-16ESect-5.1 P-17ESect-5.1 P-18ESect-5.1 P-19ESect-5.1 P-20ESect-5.1 P-21ESect-5.1 P-22ESect-5.1 P-23ESect-5.1 P-24ESect-5.1 P-25ESect-5.1 P-26ESect-5.1 P-27ESect-5.1 P-28ESect-5.1 P-29ESect-5.1 P-30ESect-5.1 P-31ESect-5.1 P-32ESect-5.1 P-33ESect-5.1 P-34ESect-5.1 P-35ESect-5.1 P-36ESect-5.1 P-37ESect-5.1 P-38ESect-5.1 P-39ESect-5.1 P-40ESect-5.1 P-41ESect-5.1 P-42ESect-5.1 P-43ESect-5.1 P-44ESect-5.1 P-45ESect-5.1 P-46ESect-5.1 P-47ESect-5.1 P-48ESect-5.1 P-49ESect-5.1 P-50ESect-5.1 P-51ESect-5.1 P-52ESect-5.1 P-53ESect-5.1 P-54ESect-5.1 P-55ESect-5.1 P-56ESect-5.1 P-57ESect-5.1 P-58ESect-5.1 P-59ESect-5.1 P-60ESect-5.1 P-61ESect-5.1 P-62ESect-5.1 P-63ESect-5.1 P-64ESect-5.1 P-65ESect-5.1 P-66ESect-5.1 P-67ESect-5.1 P-68ESect-5.1 P-69ESect-5.1 P-70ESect-5.1 P-71ESect-5.1 P-72ESect-5.1 P-73ESect-5.1 P-74ESect-5.1 P-75ESect-5.2 P-1CPSect-5.2 P-2CPSect-5.2 P-3CPSect-5.2 P-4CPSect-5.2 P-5CPSect-5.2 P-6CPSect-5.2 P-7CPSect-5.2 P-8CPSect-5.2 P-1SWUSect-5.2 P-2SWUSect-5.2 P-3SWUSect-5.2 P-4SWUSect-5.2 P-5SWUSect-5.2 P-6SWUSect-5.2 P-7SWUSect-5.2 P-8SWUSect-5.2 P-9SWUSect-5.2 P-1ESect-5.2 P-2ESect-5.2 P-3ESect-5.2 P-4ESect-5.2 P-5ESect-5.2 P-6ESect-5.2 P-7ESect-5.2 P-8ESect-5.2 P-9ESect-5.2 P-10ESect-5.2 P-11ESect-5.2 P-12ESect-5.2 P-13ESect-5.2 P-14ESect-5.2 P-15ESect-5.2 P-16ESect-5.2 P-17ESect-5.2 P-18ESect-5.2 P-19ESect-5.2 P-20ESect-5.2 P-21ESect-5.2 P-22ESect-5.2 P-23ESect-5.2 P-24ESect-5.2 P-25ESect-5.2 P-26ESect-5.2 P-27ESect-5.2 P-28ESect-5.2 P-29ESect-5.2 P-30ESect-5.2 P-31ESect-5.2 P-32ESect-5.2 P-33ESect-5.2 P-34ESect-5.2 P-35ESect-5.2 P-36ESect-5.2 P-37ESect-5.2 P-38ESect-5.2 P-39ESect-5.2 P-40ESect-5.2 P-41ESect-5.2 P-42ESect-5.2 P-43ESect-5.2 P-44ESect-5.2 P-45ESect-5.2 P-46ESect-5.2 P-47ESect-5.2 P-48ESect-5.2 P-49ESect-5.2 P-50ESect-5.2 P-51ESect-5.2 P-52ESect-5.2 P-53ESect-5.2 P-54ESect-5.2 P-55ESect-5.2 P-56ESect-5.2 P-57ESect-5.2 P-58ESect-5.2 P-59ESect-5.2 P-60ESect-5.2 P-61ESect-5.2 P-62ESect-5.3 P-1CPSect-5.3 P-2CPSect-5.3 P-3CPSect-5.3 P-4CPSect-5.3 P-5CPSect-5.3 P-6CPSect-5.3 P-7CPSect-5.3 P-1SWUSect-5.3 P-2SWUSect-5.3 P-3SWUSect-5.3 P-4SWUSect-5.3 P-5SWUSect-5.3 P-6SWUSect-5.3 P-7SWUSect-5.3 P-8SWUSect-5.3 P-1ESect-5.3 P-2ESect-5.3 P-3ESect-5.3 P-4ESect-5.3 P-5ESect-5.3 P-6ESect-5.3 P-7ESect-5.3 P-8ESect-5.3 P-9ESect-5.3 P-10ESect-5.3 P-11ESect-5.3 P-12ESect-5.3 P-13ESect-5.3 P-14ESect-5.3 P-15ESect-5.3 P-16ESect-5.3 P-17ESect-5.3 P-18ESect-5.3 P-19ESect-5.3 P-20ESect-5.3 P-21ESect-5.3 P-22ESect-5.3 P-23ESect-5.3 P-24ESect-5.3 P-25ESect-5.3 P-26ESect-5.3 P-27ESect-5.3 P-28ESect-5.3 P-29ESect-5.3 P-30ESect-5.3 P-31ESect-5.3 P-32ESect-5.3 P-33ESect-5.3 P-34ESect-5.3 P-35ESect-5.3 P-36ESect-5.3 P-37ESect-5.3 P-38ESect-5.3 P-39ESect-5.3 P-40ESect-5.3 P-41ESect-5.3 P-42ESect-5.3 P-43ESect-5.3 P-44ESect-5.3 P-45ESect-5.3 P-46ESect-5.3 P-47ESect-5.3 P-48ESect-5.3 P-49ESect-5.3 P-50ESect-5.3 P-51ESect-5.3 P-52ESect-5.3 P-53ESect-5.3 P-54ESect-5.3 P-55ESect-5.3 P-56ESect-5.3 P-57ESect-5.3 P-58ESect-5.3 P-1QYSect-5.3 P-2QYSect-5.3 P-3QYSect-5.3 P-4QYSect-5.3 P-5QYSect-5.3 P-6QYSect-5.3 P-7QYSect-5.3 P-8QYSect-5.3 P-9QYSect-5.3 P-10QYSect-5.3 P-11QYSect-5.3 P-12QYSect-5.3 P-13QYSect-5.3 P-14QYSect-5.3 P-15QYSect-5.3 P-16QYSect-5.3 P-17QYSect-5.3 P-18QYSect-5.3 P-19QYSect-5.3 P-20QYSect-5.3 P-21QYSect-5.4 P-1CPSect-5.4 P-2CPSect-5.4 P-3CPSect-5.4 P-4CPSect-5.4 P-5CPSect-5.4 P-6CPSect-5.4 P-7CPSect-5.4 P-8CPSect-5.4 P-9CPSect-5.4 P-1SWUSect-5.4 P-2SWUSect-5.4 P-3SWUSect-5.4 P-4SWUSect-5.4 P-5SWUSect-5.4 P-6SWUSect-5.4 P-7SWUSect-5.4 P-1ESect-5.4 P-2ESect-5.4 P-3ESect-5.4 P-4ESect-5.4 P-5ESect-5.4 P-6ESect-5.4 P-7ESect-5.4 P-8ESect-5.4 P-9ESect-5.4 P-10ESect-5.4 P-11ESect-5.4 P-12ESect-5.4 P-13ESect-5.4 P-14ESect-5.4 P-15ESect-5.4 P-16ESect-5.4 P-17ESect-5.4 P-18ESect-5.4 P-19ESect-5.4 P-20ESect-5.4 P-21ESect-5.4 P-22ESect-5.4 P-23ESect-5.4 P-24ESect-5.4 P-25ESect-5.4 P-26ESect-5.4 P-27ESect-5.4 P-28ESect-5.4 P-29ESect-5.4 P-30ESect-5.4 P-31ESect-5.4 P-32ESect-5.4 P-33ESect-5.4 P-34ESect-5.4 P-35ESect-5.4 P-36ESect-5.4 P-37ESect-5.4 P-38ESect-5.4 P-39ESect-5.4 P-40ESect-5.4 P-41ESect-5.4 P-42ESect-5.4 P-43ESect-5.4 P-44ESect-5.4 P-45ESect-5.4 P-46ESect-5.4 P-47ESect-5.4 P-48ESect-5.4 P-49ESect-5.4 P-50ESect-5.4 P-51ESect-5.4 P-52ESect-5.4 P-53ESect-5.4 P-54ESect-5.4 P-55ESect-5.4 P-56ESect-5.4 P-57ESect-5.4 P-58ESect-5.4 P-59ESect-5.4 P-60ESect-5.4 P-61ESect-5.4 P-62ESect-5.4 P-63ESect-5.4 P-64ESect-5.4 P-65ESect-5.4 P-66ESect-5.4 P-67ESect-5.4 P-68ESect-5.4 P-69ESect-5.4 P-70ESect-5.4 P-71ESect-5.4 P-72ESect-5.4 P-73ESect-5.4 P-74ESect-5.4 P-75ESect-5.4 P-76ESect-5.4 P-77ESect-5.4 P-78ESect-5.4 P-79ESect-5.5 P-1CPSect-5.5 P-2CPSect-5.5 P-3CPSect-5.5 P-4CPSect-5.5 P-5CPSect-5.5 P-6CPSect-5.5 P-1SWUSect-5.5 P-2SWUSect-5.5 P-3SWUSect-5.5 P-4SWUSect-5.5 P-5SWUSect-5.5 P-6SWUSect-5.5 P-7SWUSect-5.5 P-8SWUSect-5.5 P-1ESect-5.5 P-2ESect-5.5 P-3ESect-5.5 P-4ESect-5.5 P-5ESect-5.5 P-6ESect-5.5 P-7ESect-5.5 P-8ESect-5.5 P-9ESect-5.5 P-10ESect-5.5 P-11ESect-5.5 P-12ESect-5.5 P-13ESect-5.5 P-14ESect-5.5 P-15ESect-5.5 P-16ESect-5.5 P-17ESect-5.5 P-18ESect-5.5 P-19ESect-5.5 P-20ESect-5.5 P-21ESect-5.5 P-22ESect-5.5 P-23ESect-5.5 P-24ESect-5.5 P-25ESect-5.5 P-26ESect-5.5 P-27ESect-5.5 P-28ESect-5.5 P-29ESect-5.5 P-30ESect-5.5 P-31ESect-5.5 P-32ESect-5.5 P-33ESect-5.5 P-34ESect-5.5 P-35ESect-5.5 P-36ESect-5.5 P-37ESect-5.5 P-38ESect-5.5 P-39ESect-5.5 P-40ESect-5.5 P-41ESect-5.5 P-42ESect-5.5 P-43ESect-5.5 P-44ESect-5.5 P-45ESect-5.5 P-46ESect-5.5 P-47ESect-5.5 P-48ESect-5.5 P-49ESect-5.5 P-50ESect-5.5 P-51ESect-5.5 P-52ESect-5.5 P-53ESect-5.5 P-54ESect-5.5 P-55ESect-5.5 P-56ESect-5.5 P-57ESect-5.5 P-58ESect-5.6 P-1CPSect-5.6 P-2CPSect-5.6 P-3CPSect-5.6 P-1SWUSect-5.6 P-2SWUSect-5.6 P-3SWUSect-5.6 P-4SWUSect-5.6 P-5SWUSect-5.6 P-6SWUSect-5.6 P-7SWUSect-5.6 P-8SWUSect-5.6 P-9SWUSect-5.6 P-10SWUSect-5.6 P-1ESect-5.6 P-2ESect-5.6 P-3ESect-5.6 P-4ESect-5.6 P-5ESect-5.6 P-6ESect-5.6 P-7ESect-5.6 P-8ESect-5.6 P-9ESect-5.6 P-10ESect-5.6 P-11ESect-5.6 P-12ESect-5.6 P-13ESect-5.6 P-14ESect-5.6 P-15ESect-5.6 P-16ESect-5.6 P-17ESect-5.6 P-18ESect-5.6 P-19ESect-5.6 P-20ESect-5.6 P-29ESect-5.6 P-30ESect-5.6 P-31ESect-5.6 P-33ECh-5 P-1RECh-5 P-2RECh-5 P-3RECh-5 P-4RECh-5 P-5RECh-5 P-6RECh-5 P-7RECh-5 P-8RECh-5 P-9RECh-5 P-10RECh-5 P-11RECh-5 P-12RECh-5 P-13RECh-5 P-14RECh-5 P-15RECh-5 P-16RECh-5 P-17RECh-5 P-18RECh-5 P-19RECh-5 P-20RECh-5 P-21RECh-5 P-22RECh-5 P-23RECh-5 P-24RECh-5 P-25RECh-5 P-26RECh-5 P-27RECh-5 P-28RECh-5 P-29RECh-5 P-30RECh-5 P-31RECh-5 P-32RECh-5 P-33RECh-5 P-34RECh-5 P-35RECh-5 P-36RECh-5 P-37RECh-5 P-38RECh-5 P-39RECh-5 P-40RECh-5 P-41RECh-5 P-42RECh-5 P-43RECh-5 P-44RECh-5 P-45RECh-5 P-46RECh-5 P-47RECh-5 P-48RECh-5 P-49RECh-5 P-50RECh-5 P-51RECh-5 P-52RECh-5 P-53RECh-5 P-54RECh-5 P-55RECh-5 P-56RECh-5 P-57RECh-5 P-58RECh-5 P-59RECh-5 P-60RECh-5 P-61RECh-5 P-62RECh-5 P-63RECh-5 P-64RECh-5 P-65RECh-5 P-66RECh-5 P-67RECh-5 P-68RECh-5 P-69RECh-5 P-70RECh-5 P-71RECh-5 P-72RECh-5 P-73RECh-5 P-74RECh-5 P-75RECh-5 P-76RECh-5 P-77RECh-5 P-78RECh-5 P-79RECh-5 P-80RECh-5 P-81RECh-5 P-82RECh-5 P-83RECh-5 P-84RECh-5 P-85RECh-5 P-86RECh-5 P-87RECh-5 P-88RECh-5 P-89RECh-5 P-90RECh-5 P-91RECh-5 P-92RECh-5 P-93RECh-5 P-94RECh-5 P-95RECh-5 P-96RECh-5 P-97RECh-5 P-98RECh-5 P-99RECh-5 P-100RECh-5 P-101RECh-5 P-102RECh-5 P-103RECh-5 P-104RECh-5 P-105RECh-5 P-106RECh-5 P-107RECh-5 P-108RECh-5 P-109RECh-5 P-110RECh-5 P-111RECh-5 P-112RECh-5 P-113RECh-5 P-114RECh-5 P-115RECh-5 P-1TYSCh-5 P-2TYSCh-5 P-3TYSCh-5 P-4TYSCh-5 P-5TYSCh-5 P-6TYSCh-5 P-7TYSCh-5 P-8TYSCh-5 P-9TYSCh-5 P-10TYSCh-5 P-11TYSCh-5 P-12TYSCh-5 P-13TYSCh-5 P-14TYSCh-5 P-15TYSCh-5 P-16TYSCh-5 P-17TYSCh-5 P-18TYSCh-5 P-19TYSCh-5 P-20TYSCh-5 P-21TYSCh-5 P-22TYS

Additional Math Solutions

Find more solutions based on key concepts

Show solutions add

Solve the equations in Exercises 126. 2x3x2x3x+1=0

Finite Mathematics and Applied Calculus (MindTap Course List)

Show that limn(1+xn)n=ex for any x0.

Calculus (MindTap Course List)

In Exercises 107-120, factor each expression completely. 112. x2 2x 15

Applied Calculus for the Managerial, Life, and Social Sciences: A Brief Approach

In problems 23-58, perform the indicated operations and simplify. 44.

Mathematical Applications for the Management, Life, and Social Sciences

Howmanyin3arein25cm3?

Elementary Technical Mathematics

In Exercises 58, write the system of equations corresponding to each augmented matrix. [3211|45]

Finite Mathematics for the Managerial, Life, and Social Sciences

π does not exist

Study Guide for Stewart's Multivariable Calculus, 8th

The general solution to dydt=ky is: a) y(t) = y(0)ekt b) y(t) = y(k)et c) y(t) = y(t)ek d) y(t) = ey(0)kt

Study Guide for Stewart's Single Variable Calculus: Early Transcendentals, 8th