BuyFindarrow_forward

Single Variable Calculus: Early Tr...

8th Edition
James Stewart
ISBN: 9781305270343

Solutions

Chapter
Section
BuyFindarrow_forward

Single Variable Calculus: Early Tr...

8th Edition
James Stewart
ISBN: 9781305270343
Textbook Problem

Sketch the region enclosed by the given curves and find its area.

y = x4, y = 2 − |x|

To determine

To draw: The region enclosed by the given curves.

The area of the region enclosed by the curves.

Explanation

Given information:

The two curves has a function of y=x4 and y=2|x|.

Calculation:

Procedure to sketch the region bounded by the two curves is explained below:

  • Draw the graph for the function y=x4 by substituting different values for x.
  • Similarly in the same graph plot for the function y=2|x| by substituting different values for x.
  • Shade the region lies between the intersecting points of the curves.

The region enclosed by the curves y=x4 and y=2|x| is shown in Figure 1.

Refer to Figure 1.

The intersecting points of the curves are x=1 and x=1.

The curves are bounded by the top and bottom curve. Hence, the integration can be done with respect to x.

Find the area of the region bounded by the curves using the relation:

A=ab(f(x)g(x))dx (1)

Here, the top curve is f(x), the bottom curve is g(x), the lower limit is a, and the upper limit is b.

Substitute 2|x| for f(x), x4 for g(x), 1 for a, and 1 for b in Equation (1).

A=11[(2|x|)x4]dx (2)

The region bounded by the curve is symmetrical about the y axis

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started
Sect-6.1 P-11ESect-6.1 P-12ESect-6.1 P-13ESect-6.1 P-14ESect-6.1 P-15ESect-6.1 P-16ESect-6.1 P-17ESect-6.1 P-18ESect-6.1 P-19ESect-6.1 P-20ESect-6.1 P-21ESect-6.1 P-22ESect-6.1 P-23ESect-6.1 P-24ESect-6.1 P-25ESect-6.1 P-26ESect-6.1 P-27ESect-6.1 P-28ESect-6.1 P-29ESect-6.1 P-30ESect-6.1 P-31ESect-6.1 P-32ESect-6.1 P-33ESect-6.1 P-34ESect-6.1 P-35ESect-6.1 P-36ESect-6.1 P-37ESect-6.1 P-38ESect-6.1 P-39ESect-6.1 P-40ESect-6.1 P-41ESect-6.1 P-42ESect-6.1 P-43ESect-6.1 P-44ESect-6.1 P-46ESect-6.1 P-47ESect-6.1 P-48ESect-6.1 P-49ESect-6.1 P-50ESect-6.1 P-51ESect-6.1 P-52ESect-6.1 P-53ESect-6.1 P-54ESect-6.1 P-55ESect-6.1 P-56ESect-6.1 P-57ESect-6.1 P-58ESect-6.1 P-59ESect-6.1 P-60ESect-6.1 P-61ESect-6.2 P-1ESect-6.2 P-2ESect-6.2 P-3ESect-6.2 P-4ESect-6.2 P-5ESect-6.2 P-6ESect-6.2 P-7ESect-6.2 P-8ESect-6.2 P-9ESect-6.2 P-10ESect-6.2 P-11ESect-6.2 P-12ESect-6.2 P-13ESect-6.2 P-14ESect-6.2 P-15ESect-6.2 P-16ESect-6.2 P-17ESect-6.2 P-18ESect-6.2 P-19ESect-6.2 P-20ESect-6.2 P-21ESect-6.2 P-22ESect-6.2 P-23ESect-6.2 P-24ESect-6.2 P-25ESect-6.2 P-26ESect-6.2 P-27ESect-6.2 P-28ESect-6.2 P-29ESect-6.2 P-30ESect-6.2 P-31ESect-6.2 P-32ESect-6.2 P-33ESect-6.2 P-34ESect-6.2 P-35ESect-6.2 P-36ESect-6.2 P-39ESect-6.2 P-40ESect-6.2 P-41ESect-6.2 P-42ESect-6.2 P-43ESect-6.2 P-44ESect-6.2 P-45ESect-6.2 P-47ESect-6.2 P-48ESect-6.2 P-49ESect-6.2 P-50ESect-6.2 P-51ESect-6.2 P-52ESect-6.2 P-53ESect-6.2 P-54ESect-6.2 P-55ESect-6.2 P-56ESect-6.2 P-57ESect-6.2 P-58ESect-6.2 P-59ESect-6.2 P-60ESect-6.2 P-61ESect-6.2 P-62ESect-6.2 P-63ESect-6.2 P-64ESect-6.2 P-65ESect-6.2 P-66ESect-6.2 P-67ESect-6.2 P-68ESect-6.2 P-69ESect-6.2 P-70ESect-6.2 P-71ESect-6.2 P-72ESect-6.3 P-1ESect-6.3 P-2ESect-6.3 P-3ESect-6.3 P-4ESect-6.3 P-5ESect-6.3 P-6ESect-6.3 P-7ESect-6.3 P-8ESect-6.3 P-9ESect-6.3 P-10ESect-6.3 P-11ESect-6.3 P-12ESect-6.3 P-13ESect-6.3 P-14ESect-6.3 P-15ESect-6.3 P-16ESect-6.3 P-17ESect-6.3 P-18ESect-6.3 P-19ESect-6.3 P-20ESect-6.3 P-21ESect-6.3 P-22ESect-6.3 P-23ESect-6.3 P-24ESect-6.3 P-25ESect-6.3 P-26ESect-6.3 P-27ESect-6.3 P-28ESect-6.3 P-29ESect-6.3 P-30ESect-6.3 P-31ESect-6.3 P-32ESect-6.3 P-33ESect-6.3 P-34ESect-6.3 P-37ESect-6.3 P-38ESect-6.3 P-39ESect-6.3 P-40ESect-6.3 P-41ESect-6.3 P-42ESect-6.3 P-43ESect-6.3 P-44ESect-6.3 P-45ESect-6.3 P-46ESect-6.3 P-47ESect-6.3 P-48ESect-6.4 P-1ESect-6.4 P-2ESect-6.4 P-3ESect-6.4 P-4ESect-6.4 P-5ESect-6.4 P-6ESect-6.4 P-7ESect-6.4 P-8ESect-6.4 P-9ESect-6.4 P-10ESect-6.4 P-11ESect-6.4 P-12ESect-6.4 P-13ESect-6.4 P-14ESect-6.4 P-15ESect-6.4 P-16ESect-6.4 P-17ESect-6.4 P-18ESect-6.4 P-19ESect-6.4 P-20ESect-6.4 P-21ESect-6.4 P-22ESect-6.4 P-23ESect-6.4 P-24ESect-6.4 P-25ESect-6.4 P-26ESect-6.4 P-27ESect-6.4 P-28ESect-6.4 P-29ESect-6.4 P-30ESect-6.4 P-31ESect-6.4 P-32ESect-6.4 P-33ESect-6.4 P-34ESect-6.5 P-1ESect-6.5 P-2ESect-6.5 P-3ESect-6.5 P-4ESect-6.5 P-5ESect-6.5 P-6ESect-6.5 P-7ESect-6.5 P-8ESect-6.5 P-9ESect-6.5 P-10ESect-6.5 P-11ESect-6.5 P-12ESect-6.5 P-13ESect-6.5 P-14ESect-6.5 P-15ESect-6.5 P-16ESect-6.5 P-17ESect-6.5 P-18ESect-6.5 P-19ESect-6.5 P-20ESect-6.5 P-21ESect-6.5 P-22ESect-6.5 P-23ESect-6.5 P-24ESect-6.5 P-25ESect-6.5 P-26ECh-6 P-1RCCCh-6 P-2RCCCh-6 P-3RCCCh-6 P-4RCCCh-6 P-5RCCCh-6 P-6RCCCh-6 P-1RECh-6 P-2RECh-6 P-3RECh-6 P-4RECh-6 P-5RECh-6 P-6RECh-6 P-7RECh-6 P-8RECh-6 P-9RECh-6 P-10RECh-6 P-11RECh-6 P-12RECh-6 P-13RECh-6 P-14RECh-6 P-15RECh-6 P-16RECh-6 P-17RECh-6 P-18RECh-6 P-19RECh-6 P-20RECh-6 P-21RECh-6 P-22RECh-6 P-23RECh-6 P-24RECh-6 P-25RECh-6 P-26RECh-6 P-27RECh-6 P-28RECh-6 P-29RECh-6 P-30RECh-6 P-31RECh-6 P-32RECh-6 P-33RECh-6 P-34RECh-6 P-1PCh-6 P-2PCh-6 P-3PCh-6 P-4PCh-6 P-5PCh-6 P-6PCh-6 P-7PCh-6 P-8PCh-6 P-9PCh-6 P-10PCh-6 P-11PCh-6 P-12PCh-6 P-13PCh-6 P-15P

Additional Math Solutions

Find more solutions based on key concepts

Show solutions add

Evaluate the integral. 31.1x31dx

Calculus: Early Transcendentals

Solve the equations in Exercises 112 for x (mentally, if possible). x+1=3x+1

Finite Mathematics and Applied Calculus (MindTap Course List)

Draw a histogram for the distribution of scores shown in the following table. x f 10 2 9 4 8 1 7 1 6 4 5 2

Essentials of Statistics for The Behavioral Sciences (MindTap Course List)

In Exercises 49-62, find the indicated limit, if it exists. 57. limx2x2x6x2+x2

Applied Calculus for the Managerial, Life, and Social Sciences: A Brief Approach

What condition on and is necessary for the standard beta pdf to be symmetric?

Probability and Statistics for Engineering and the Sciences

True or False: The Alternating Series Test may be applied to determine the convergence of n=12+(1)n2n2.

Study Guide for Stewart's Single Variable Calculus: Early Transcendentals, 8th

Discovery and Writing Prove that C(n,n)=1.

College Algebra (MindTap Course List)