# a. Define f : Z → Z by the rule f ( n ) = 2 n , for every integer n . (i) Is f one-to-one? Prove or give a counterexample. (ii) Is f onto? Prove or give a counterexample. b. Let 2Z denote the set of all even integers. That is, 2 Z = { n ∈ Z | n = 2 k , for some integer k } . Define h : Z → 2 Z by the rule h ( n ) = 2 n , for each integer n . Is h onto? Prove or give a counterexample.

### Discrete Mathematics With Applicat...

5th Edition
EPP + 1 other
Publisher: Cengage Learning,
ISBN: 9781337694193

### Discrete Mathematics With Applicat...

5th Edition
EPP + 1 other
Publisher: Cengage Learning,
ISBN: 9781337694193

#### Solutions

Chapter
Section
Chapter 7.2, Problem 10ES
Textbook Problem

## Expert Solution

### Want to see the full answer?

Check out a sample textbook solution.See solution

### Want to see this answer and more?

Experts are waiting 24/7 to provide step-by-step solutions in as fast as 30 minutes!*

See Solution

*Response times vary by subject and question complexity. Median response time is 34 minutes and may be longer for new subjects.