Mechanism of Seizure Formation
1. Excitation of a group of nerves: During a seizure, a small group of abnormal neurons repeatedly fire rapid action potentials. Therefore, there is no resting or refractory period for these neuron and they have a have prolonged depolarization. These neurons then transmit these impulses to adjacent neurons. A seizure occurs when a large number of neurons are involved and produce electrical discharges that cause a storm of electrical activity in the brain or to distant areas through established anatomic pathways. There is influx of Na+ and Ca++ ions and involves neurotransmitters like Glutamate and Aspartate.
2. Too Little Inhibition: Decreased inhibitory neurotransmission which is mainly brought about by Gamma amino butyric acid (GABA).
3. Hypersyncronization of a neuronal population: A single hyperexcitable neuron cannot generate a seizure. An adequate number of hyperexcitable, hypersynchronized neurons in a sustained depolarized state