2) What is the maximum number of edges possible for any bipartite graph between A and B?

Elementary Geometry For College Students, 7e
7th Edition
ISBN:9781337614085
Author:Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:Alexander, Daniel C.; Koeberlein, Geralyn M.
Chapter2: Parallel Lines
Section2.5: Convex Polygons
Problem 41E
icon
Related questions
Question

please provide complete handwritten solution for Q2

 

Let A and B each be sets of N labeled vertices, and consider bipartite graphs between A and B.
1) How many possible ways are there to match or pair vertices between A and B?
2) What is the maximum number of edges possible for any bipartite graph between A and B?
3) Show by example that there is a bipartite graph between A and B with N² – N edges, and no perfect matching.
Questions 2.2 and 2.3 indicate that even if the bipartite graph is almost full of all the edges it might have, it may
still no have a perfect matching. However, we can show that perfect matchings are relatively common with much
less edge-heavy bipartite graphs.
4) Starting with no edges between A and B, if N edges are added between A and B uniformly at random, what
is the probability that those N edges form a perfect matching?
5) Starting with no edges between A and B, if |E| many edges are add
between A and B uniformly at random,
what is the expected number of perfect matchings in the resulting graph? Hint: if S is a set of edges in a
potential perfect matching, let Xs =1 if all the edges in S are added to the graph, and Xs = 0 if any of them
are missing. What is E[Xs]?
Transcribed Image Text:Let A and B each be sets of N labeled vertices, and consider bipartite graphs between A and B. 1) How many possible ways are there to match or pair vertices between A and B? 2) What is the maximum number of edges possible for any bipartite graph between A and B? 3) Show by example that there is a bipartite graph between A and B with N² – N edges, and no perfect matching. Questions 2.2 and 2.3 indicate that even if the bipartite graph is almost full of all the edges it might have, it may still no have a perfect matching. However, we can show that perfect matchings are relatively common with much less edge-heavy bipartite graphs. 4) Starting with no edges between A and B, if N edges are added between A and B uniformly at random, what is the probability that those N edges form a perfect matching? 5) Starting with no edges between A and B, if |E| many edges are add between A and B uniformly at random, what is the expected number of perfect matchings in the resulting graph? Hint: if S is a set of edges in a potential perfect matching, let Xs =1 if all the edges in S are added to the graph, and Xs = 0 if any of them are missing. What is E[Xs]?
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Elementary Geometry For College Students, 7e
Elementary Geometry For College Students, 7e
Geometry
ISBN:
9781337614085
Author:
Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:
Cengage,