2. A skydiver dropped a block of wood at the same time she dove out of the plane. The skydiver has a mass of 85 kg and the block 15 kg. After falling 10 m, the block and the skydiver have the same speed (we are neglecting air resistance while the parachute has not been used). The skydiver then opens her parachute and, 10 additional meters later, the skydiver is moving at 16 m/s. a. How much faster is the block than the skydiver in this final state? b. How much energy was lost by the skydiver due to friction during these last 10 meters? c. Calculate the average air resistance (force) exerted on the skydiver.

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
100%
2. A skydiver dropped a block of wood at the same time she dove out of the plane. The
skydiver has a mass of 85 kg and the block 15 kg. After falling 10 m, the block and the
skydiver have the same speed (we are neglecting air resistance while the parachute has
not been used). The skydiver then opens her parachute and, 10 additional meters later,
the skydiver is moving at 16 m/s.
a. How much faster is the block than the skydiver in this final state?
b. How much energy was lost by the skydiver due to friction during these last 10
meters?
c. Calculate the average air resistance (force) exerted on the skydiver.
makydiver
= 85 kg
miock" 15 kg
A
Vaydiver = Valock = 0
air
10 m
skydiver
block
B
Earth's
field
skydiver block
10 m
16 m/s = v
skydiver
Vtiock
Part a:
E,
E, E,
Ega = Ega + E,
mgh, = mgh, + ½ mv
gh, = gh, + % ?
(10)(20) = (10)(10) + ½ ?
200 = 100 + ½
100 = ½
200 = v2
v = 14.1 m/s
g.8
block
air
Earth
A
в
So the block is moving 1.9
m/s faster than the skydiver!
Transcribed Image Text:2. A skydiver dropped a block of wood at the same time she dove out of the plane. The skydiver has a mass of 85 kg and the block 15 kg. After falling 10 m, the block and the skydiver have the same speed (we are neglecting air resistance while the parachute has not been used). The skydiver then opens her parachute and, 10 additional meters later, the skydiver is moving at 16 m/s. a. How much faster is the block than the skydiver in this final state? b. How much energy was lost by the skydiver due to friction during these last 10 meters? c. Calculate the average air resistance (force) exerted on the skydiver. makydiver = 85 kg miock" 15 kg A Vaydiver = Valock = 0 air 10 m skydiver block B Earth's field skydiver block 10 m 16 m/s = v skydiver Vtiock Part a: E, E, E, Ega = Ega + E, mgh, = mgh, + ½ mv gh, = gh, + % ? (10)(20) = (10)(10) + ½ ? 200 = 100 + ½ 100 = ½ 200 = v2 v = 14.1 m/s g.8 block air Earth A в So the block is moving 1.9 m/s faster than the skydiver!
Expert Solution
steps

Step by step

Solved in 4 steps

Blurred answer
Knowledge Booster
Dynamics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY