2-102 A long homogeneous resistance wire of radius r = 0.6 cm and thermal conductivity k 15.2 W/m-K is being used to boil water at atmospheric pressure by the passage of electric current. Heat is generated in the wire uniformly as a result of resistance heating at a rate of 16.4 W/cm3. The heat generated is transferred to water at 100°C by convection with an average heat transfer coefficient of h 3200 W/m2-K. Assuming steady one-dimensional heat transfer, (a) express the differential equation and the boundary conditions for heat conduction through the wire, (b) obtain a relation for the variation of temperature in the wire by solving the differential equation, and (c) determine the temperature at the centerline of the wire. Answer: () 125°C FIGURE P2-102 т. Water Resistance heater

Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
8th Edition
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Kreith, Frank; Manglik, Raj M.
Chapter3: Transient Heat Conduction
Section: Chapter Questions
Problem 3.12P
icon
Related questions
Question
2-102 A long homogeneous resistance wire of radius r = 0.6 cm and thermal conductivity k 15.2 W/m-K is being used to boil water at atmospheric pressure by the passage of electric current. Heat is
generated in the wire uniformly as a result of resistance heating at a rate of 16.4 W/cm3. The heat generated is transferred to water at 100°C by convection with an average heat transfer coefficient of h
3200 W/m2-K. Assuming steady one-dimensional heat transfer, (a) express the differential equation and the boundary conditions for heat conduction through the wire, (b) obtain a relation for the variation of
temperature in the wire by solving the differential equation, and (c) determine the temperature at the centerline of the wire. Answer: () 125°C
FIGURE P2-102
т.
Water
Resistance
heater
Transcribed Image Text:2-102 A long homogeneous resistance wire of radius r = 0.6 cm and thermal conductivity k 15.2 W/m-K is being used to boil water at atmospheric pressure by the passage of electric current. Heat is generated in the wire uniformly as a result of resistance heating at a rate of 16.4 W/cm3. The heat generated is transferred to water at 100°C by convection with an average heat transfer coefficient of h 3200 W/m2-K. Assuming steady one-dimensional heat transfer, (a) express the differential equation and the boundary conditions for heat conduction through the wire, (b) obtain a relation for the variation of temperature in the wire by solving the differential equation, and (c) determine the temperature at the centerline of the wire. Answer: () 125°C FIGURE P2-102 т. Water Resistance heater
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Heat Transfer (Activate Learning wi…
Principles of Heat Transfer (Activate Learning wi…
Mechanical Engineering
ISBN:
9781305387102
Author:
Kreith, Frank; Manglik, Raj M.
Publisher:
Cengage Learning