3-34. A shear spring is made from two blocks of rubber, each having a height h, width b, and thickness a. The blocks are bonded to three plates as shown. If the plates are rigid and the shear modulus of the rubber is G, determine the displacement of plate A when the vertical load P is applied. Assume that the displacement is small SO that 8 = = a tan y≈ ay. 8 h

Mechanics of Materials (MindTap Course List)
9th Edition
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Barry J. Goodno, James M. Gere
Chapter11: Columns
Section: Chapter Questions
Problem 11.5.10P: Solve the preceding problem (W 250 × 44.8) if the resultant force P equals 110 kN and E = 200 GPa.
icon
Related questions
Question

only HANDWRITTEN answer needed ( NOT TYPED)

3-34. A shear spring is made from two blocks of rubber,
each having a height h, width b, and thickness a. The blocks
are bonded to three plates as shown. If the plates are rigid
and the shear modulus of the rubber is G, determine the
displacement of plate A when the vertical load P is applied.
Assume that the displacement is small SO that
≈ay.
8 =
= a tan y
A
Prob. 3-34
Transcribed Image Text:3-34. A shear spring is made from two blocks of rubber, each having a height h, width b, and thickness a. The blocks are bonded to three plates as shown. If the plates are rigid and the shear modulus of the rubber is G, determine the displacement of plate A when the vertical load P is applied. Assume that the displacement is small SO that ≈ay. 8 = = a tan y A Prob. 3-34
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Axial Load
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning