3. An individual does leg curl exercise to strengthen his hamstring muscles. The 3 kg load is located 36 cm from the axis of rotation (the knee joint). The leg weight is 5 kg and the center of mass of the leg is located 20 cm from the knee joint. The radius of gyration about the center of mass of the leg is 14 cm. At the instant shown, the leg is in a horizontal position and is moving counterclockwise with an angular acceleration of a = +4 rad/s² and an angular velocity of w = +3 rad/s² The hamstring muscle inserts 3 cm from the knee joint and is oriented at an angle of 60° with respect to the leg. Treat the 3 kg load as a point mass. Calculate the following: (a) the magnitude of Fm required to cause this motion. (b) the magnitudes of both the tangential and centripetal accelerations of the load.

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
3. An individual does leg curl exercise to strengthen his hamstring muscles. The 3 kg
load is located 36 cm from the axis of rotation (the knee joint). The leg weight is 5 kg
and the center of mass of the leg is located 20 cm from the knee joint. The radius of
gyration about the center of mass of the leg is 14 cm. At the instant shown, the leg is in
a horizontal position and is moving counterclockwise with an angular acceleration of a =
+4 rad/s² and an angular velocity of w = +3 rad/s² The hamstring muscle inserts 3 cm
from the knee joint and is oriented at an angle of 60° with respect to the leg. Treat the 3
kg load as a point mass. Calculate the following:
(a) the magnitude of Fm required to cause this motion.
(b) the magnitudes of both the tangential and centripetal accelerations of the load.
Knee
pivot
Hamstring
muscle
Perpendicular
distance to pivot
Weight force
(load)
Fm
36 cm
60
knees
5 kg
3 cm
3 kg
Answers: a) 890.46 N; b) tangential: 1.44 m/s²; centripetal: 3.24 m/s²
Transcribed Image Text:3. An individual does leg curl exercise to strengthen his hamstring muscles. The 3 kg load is located 36 cm from the axis of rotation (the knee joint). The leg weight is 5 kg and the center of mass of the leg is located 20 cm from the knee joint. The radius of gyration about the center of mass of the leg is 14 cm. At the instant shown, the leg is in a horizontal position and is moving counterclockwise with an angular acceleration of a = +4 rad/s² and an angular velocity of w = +3 rad/s² The hamstring muscle inserts 3 cm from the knee joint and is oriented at an angle of 60° with respect to the leg. Treat the 3 kg load as a point mass. Calculate the following: (a) the magnitude of Fm required to cause this motion. (b) the magnitudes of both the tangential and centripetal accelerations of the load. Knee pivot Hamstring muscle Perpendicular distance to pivot Weight force (load) Fm 36 cm 60 knees 5 kg 3 cm 3 kg Answers: a) 890.46 N; b) tangential: 1.44 m/s²; centripetal: 3.24 m/s²
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 16 images

Blurred answer
Knowledge Booster
Dynamics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY