(4-x2)/(3x2-x-10)•(6x)/(8x+16)
Find answers to questions asked by students like you.
Q: ,2 x²+x-6 x3-4x2-7x+10
A: Given: y=x2+x-6x3-4x2-7x+10 For finding domain and range of given expression, first we factorize…
Q: -x2 - 6x 9 = 0 A=Dーメー 6x-9) (x) Rx)3--6x-9 -2 6,
A: Click to see the answer
Q: domain of 2x - 8x^1/3
A: Click to see the answer
Q: 5x/ x2-x-12 - 2x-1 / x2-3x-4
A: Click to see the answer
Q: Find the quotient of x4 −3x3 + 3x2 −3x + 2 by x2 −3x+ 2.
A: Click to see the answer
Q: Find the product of: -2x2 (-3x2 +1- x+ 2x)
A: Click to see the answer
Q: -5x³+ 6x2-18 X3-3X2
A: Click to see the answer
Q: What is product of (3x + 4) (x² + 3x – 2) ?
A: Click to see the answer
Q: (4x2 + 3x- 5)(2x° + 6z² + 11a - 8) x+
A: Topic = Algebra
Q: 4. x2 - 2x- 15
A: Click to see the answer
Q: (8x -3x2 + 7)- (4x' – 10x + 11)
A: Given: 8x3-3x2+7-4x3-10x+11 8x3-3x2+7-4x3-10x+11=8x3-3x2+7-4x3+10x-11 Take like terms together:…
Q: 5 - x2 + 2x – 3 = 0
A: Click to see the answer
Q: 9- 4x x+7 x+10x+21
A: Explained below
Q: x3 - 2x2 - 41x + 42 = 0
A: Click to see the answer
Q: -6(2x+1)<5-(x-4)-6x
A: Solve the inequality as follows.
Q: - 3x3 + 7x4 = 0 X1 -7x2 - 4x4 = 0
A: The solution are next step is..
Q: Simplify the rational expression.
A: GIven2x3-x2-6x2x2-7x+6
Q: (x-3)-(-8x)/(x+1)+(x+1)x
A: Click to see the answer
Q: The zeros for Ax) = x-4x-9x + 36x are 1) (0,+3,4) 2) (0,3,4) 3) (0,±3,-4) 4) (0,3,-4)
A: Using method of synthetic division to find factors of f(x).
Q: -2 x-3 x-2 8x+11
A: Click to see the answer
Q: x+6x +17 = -4x-10
A: x2+6x+17=-4x-10x2+6x+17+4x+10=0x2+10x+27=0
Q: 1 XF [-8(5-4x)] + (5-4x) (55x")
A: Click to see the answer
Q: 4. Subtract 4x³ +2x-7 from the sum of 2x3-x2+3x+4 and 3x3-4x2+5.
A: Click to see the answer
Q: Solve Polynomial: (6x4-41x2+3x+6)/(2x2-4x-3)
A: Given:
Q: -2(x+5)-1/2(-10x-4)
A: Click to see the answer
Q: 15x -10 X-8 3x-2 x2 -12x+32
A: Click to see the answer
Q: 24 = x2 - 2x, 27 = 3x + 108, find Z4
A: Click to see the answer
Q: -6(2x + 1) - 3 (x - 4) = 15x +1
A: No, it is false.
Q: x2-3x-4 1. x2-4x+5 < 0
A: From the given inequality; x2-3x-4x2-4x+5<0
Q: (9x5 - 13x2 - 17 ) - ( -8x2 + 5x5 - 12)
A: Click to see the answer
Q: 3) 3x3-x2+18X-6 (3x-x3)+ (1BX-)
A: From first two terms factor out x^2 From last two terms factor out 6
Q: 2x1 - 6x2 - X3 = -38 -3x1 - x2+ 7x3 = -34 -8x1 + x2 - 2x3 = -20
A: Click to see the answer
Q: -10x + 2y = -7 11. -10x + 2y = -2
A: Click to see the answer
Q: 3r - 8r2 + 22r – 6 12(x2 – 4x + 6) 1.
A: Consider the following integral: ∫3x3-8x2+22x-6x2x2-4x+6dx Consider the following partial fraction:…
Q: 5. x² + 3x -54T 6. x2 - 10x -24 7. x2 + x -20
A: Click to see the answer
Q: What is the product of (2x – 4)(2x + 4)? -
A: Click to see the answer
Q: -2x1 + x2 + 5x3 b) -8x1 + 7.x2 + 19x3 -10 -42 ||||
A: To solve the system:
Q: 4. (x2 + 5x -6)(3x-4)
A: Click to see the answer
Q: what is 2(2x+2y)
A: Given : 2(2x+2y)
Q: 5. gx) 2x-11x2 + 17x -6
A: Click to see the answer
Q: Classify -3x4 + 2x3 – 5x + 7 by degree.
A: The classification of a polynomial based on its degree is the mathematical term of the biggest…
Q: 2/ Find domain of y = x2-7x+10 x2–3x-5
A: on solving this we get
Q: 2x2 - llx • 15
A: Click to see the answer
Q: t2 X2 x-17x+42 2 16x+46x-35 4. 2. x+11x-60 32x-72x+40 2. 3. 5.
A: We’ll answer the first question since the exact one wasn’t specified. Please submit a new question…
Q: Find x. 15 mZA = 20° A (3x+2) (8x +2)°
A: The given diagram is
Q: Simplify : (2x - 5) - (x2 - 3x + 1)
A: Given that: 2x-5-x2-3x+1
Q: Find the partial fraction decomposition of the rational expression.
A: Find the partial fraction decomposition of the rational expression 3x+1x2-2x-15.
Q: 13, mz1=(x² +7) and mz2 (2x² + 19)".
A: we have to find the angle between the floor and the light beam.m∠1=12x2+7°m∠2=2x2+19°sincem∠1=m∠3now…
Q: 2x+1 7x-39 5(x-1) এx+ 7 4x- 18/
A: For a polygon of n sides, the sum of all the interior angles of the polygon is given by (n-2) ×180°…
Q: PCX)ニx3 <フ-2×F16X -32 tox +16| x x3 +ox16 -2 |-2x=|tox-32 <?-2x416× -32
A: i just simplified the the given polynomial and the from factorization of p i have given the roots of…