Principles of Physics: A Calculus-Based Text

5th Edition

ISBN: 9781133104261

Author: Raymond A. Serway, John W. Jewett

Publisher: Cengage Learning

*expand_more*

*expand_more*

*format_list_bulleted*

Question

A 25.0 g ball is fired horizontally with initial speed v_0 toward a 110 g ball that is hanging motionless from a 1.00 m -long string. The balls undergo a head-on, perfectly elastic collision, after which the 110 g ball swings out to a maximum angle θ_max = 50 degrees.

What was v_0?

Expert Solution

Trending nowThis is a popular solution!

Step by stepSolved in 2 steps with 2 images

Knowledge Booster

Learn more about

Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions

Initially, ball 1 rests on an incline of height h, and ball 2 rests on an incline of height h/2 as shown in Figure P11.40. They are released from rest simultaneously and collide in the trough of the track. If m2 = 4 m1 and the collision is elastic, find an expression for the velocity of each ball immediately after the collision. FIGURE P11.40 Problems 40 and 41.

*arrow_forward*

Initially, ball 1 rests on an incline of height h, and ball 2 rests on an incline of height h/2 as shown in Figure P11.40. They are released from rest simultaneously and collide elastically in the trough of the track. If m2 = 4 m1, m1 = 0.045 kg, and h = 0.65 m, what is the velocity of each ball after the collision?

*arrow_forward*

A cannon is rigidly attached to a carriage, which can move along horizontal rails but is connected to a post by a large spring, initially unstretchcd and with force constant k = 2.00 104 N/m, as shown in Figure P8.60. The cannon fires a 200-kg projectile at a velocity of 125 m/s directed 45.0 above the horizontal. (a) Assuming that the mass of the cannon and its carriage is 5 000 kg, find the recoil speed of the cannon. (b) Determine the maximum extension of the spring. (c) Find the maximum force the spring exerts on the carriage. (d) Consider the system consisting of the cannon, carriage, and projectile. Is the momentum of this system conserved during the firing? Why or why not?

*arrow_forward*

A head-on, elastic collision occurs between two billiard balls of equal mass. If a red ball is traveling to the right with speed v and a blue ball is traveling to the left with speed 3v before the collision, what statement is true concerning their velocities subsequent to the collision? Neglect any effects of spin. (a) The red ball travels to the left with speed v, while the blue ball travels to the right with speed 3v. (b) The red ball travels to the left with speed v, while the blue ball continues to move to the left with a speed 2v. (c) The red ball travels to the left with speed 3v, while the blue ball travels to the right with speed v. (d) Their final velocities cannot be determined because momentum is not conserved in the collision. (e) The velocities cannot be determined without knowing the mass of each ball.

*arrow_forward*

Review. A bullet of mass m = 8.00 g is fired into a block of mass M = 250 g that is initially at rest at the edge of a frictionless table of height h = 1.00 m (Fig. P9.45). The bullet remains in the block, and after the impact the block lands d = 2.00 m from the bottom of the table. Determine the initial speed of the bullet. Figure P9.45 Problems 45 and 46.

*arrow_forward*

Two skateboarders, with masses m1 = 75.0 kg and m2 = 65.0 kg, simultaneously leave the opposite sides of a frictionless half-pipe at height h = 4.00 m as shown in Figure P11.49. Assume the skateboarders undergo a completely elastic head-on collision on the horizontal segment of the half-pipe. Treating the skateboarders as particles and assuming they dont fall off their skateboards, what is the height reached by each skateboarder after the collision? FIGURE P11.49

*arrow_forward*

The mass of the blue puck in Figure P9.44 is 20.0% greater than the mass of the green puck. Before colliding, the pucks approach each other with momenta of equal magnitudes and opposite directions, and the green puck has an initial speed of 10.0 m/s. Find the speeds the pucks have after the collision if half the kinetic energy of the system becomes internal energy during the collision.

*arrow_forward*

A soccer player runs up behind a 0.450-kg soccer ball traveling at 3.20 m/s and kicks it in the same direction as it is moving, increasing its speed to 12.8 m/s. (a) What is the change in the magnitude of the balls momentum? (b) What magnitude impulse did the soccer player deliver to the ball? (c) What magnitude impulse would be required to kick the ball in the opposite direction at 12.8 m/s, instead? (See Section 6.1.)

*arrow_forward*

Assume the pucks in Figure P11.66 stick together after theircollision at the origin. Puck 2 has four times the mass of puck 1 (m2 = 4m1). Initially, puck 1s speed is three times puck 2s speed (v1i = 3v2i), puck 1s position is r1i=x1ii, and puck 2s position is r2i=y2ij. a. Find an expression for their velocity after the collision in terms of puck 1s initial velocity. b. What is the fraction Kf/Ki that remains in the system?

*arrow_forward*

(a) Figure P9.36 shows three points in the operation of the ballistic pendulum discussed in Example 9.6 (and shown in Fig. 9.10b). The projectile approaches the pendulum in Figure P9.36a. Figure P9.36b shows the situation just after the projectile is captured in the pendulum. In Figure P9.36c, the pendulum arm has swung upward and come to rest momentarily at a height A above its initial position. Prove that the ratio of the kinetic energy of the projectilependulum system immediately after the collision to the kinetic energy immediately before is m1|/(m1 + m2). (b) What is the ratio of the momentum of the system immediately after the collision to the momentum immediately before? (c) A student believes that such a large decrease in mechanical energy must be accompanied by at least a small decrease in momentum. How would you convince this student of the truth? Figure P9.36 Problem. 36 and 43. (a) A metal ball moves toward the pendulum. (b) The ball is captured by the pendulum. (c) The ballpendulum combination swings up through a height h before coming to rest.

*arrow_forward*

Problems 44 and 45 are paired. C A model rocket is shot straight up. As it reaches the highest point in its trajectory, it explodes in midair into three pieces with velocities indicated by the arrows in Figure P10.44, as viewed from directly above the explosion. Rank the mass of each piece in order from smallest to largest and justify your answer. FIGURE P10.44 Problems 44 and 45.

*arrow_forward*

A car crashes into a large tree that does not move. The car goes from 30 m/s to 0 in 1.3 m. (a) What impulse is applied to the driver by the seatbelt, assuming he follows the same motion as the car? (b) What is the average force applied to the driver by the seatbelt?

*arrow_forward*

*arrow_back_ios*

- SEE MORE QUESTIONS

*arrow_forward_ios*

Recommended textbooks for you

Principles of Physics: A Calculus-Based Text

Physics

ISBN:9781133104261

Author:Raymond A. Serway, John W. Jewett

Publisher:Cengage Learning

Physics for Scientists and Engineers with Modern ...

Physics

ISBN:9781337553292

Author:Raymond A. Serway, John W. Jewett

Publisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...

Physics

ISBN:9781133939146

Author:Katz, Debora M.

Publisher:Cengage Learning

College Physics

Physics

ISBN:9781285737027

Author:Raymond A. Serway, Chris Vuille

Publisher:Cengage Learning

Physics for Scientists and Engineers, Technology ...

Physics

ISBN:9781305116399

Author:Raymond A. Serway, John W. Jewett

Publisher:Cengage Learning

College Physics

Physics

ISBN:9781305952300

Author:Raymond A. Serway, Chris Vuille

Publisher:Cengage Learning

Principles of Physics: A Calculus-Based Text

Physics

ISBN:9781133104261

Author:Raymond A. Serway, John W. Jewett

Publisher:Cengage Learning

Physics for Scientists and Engineers with Modern ...

Physics

ISBN:9781337553292

Author:Raymond A. Serway, John W. Jewett

Publisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...

Physics

ISBN:9781133939146

Author:Katz, Debora M.

Publisher:Cengage Learning

College Physics

Physics

ISBN:9781285737027

Author:Raymond A. Serway, Chris Vuille

Publisher:Cengage Learning

Physics for Scientists and Engineers, Technology ...

Physics

ISBN:9781305116399

Author:Raymond A. Serway, John W. Jewett

Publisher:Cengage Learning

College Physics

Physics

ISBN:9781305952300

Author:Raymond A. Serway, Chris Vuille

Publisher:Cengage Learning