A  cylinder with a radius of 1.8 cm is floating in water as shown below. The mass of the cylinder is 1.80 kg. Calculate the depth of the bottom end of the cylinder (Density of water = 1000 kg/m3; one atmosphere = 1.013 X 105 Pa., 1meter = 100 cm)

University Physics Volume 1
18th Edition
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:William Moebs, Samuel J. Ling, Jeff Sanny
Chapter14: Fluid Mechanics
Section: Chapter Questions
Problem 94P: Using the equation of the previous problem, find the viscosity of motor oil in which a steel ball of...
icon
Related questions
icon
Concept explainers
Topic Video
Question

A  cylinder with a radius of 1.8 cm is floating in water as shown below. The mass of the cylinder is 1.80 kg. Calculate the depth of the bottom end of the cylinder

(Density of water = 1000 kg/m3; one atmosphere = 1.013 X 105 Pa., 1meter = 100 cm)

Intensity level:
m
T = 2n,
k
B=10log
I.
Frequency:
f =
T
Intensity level difference:
Angular frequency:
k
w = 2n f
AB =10log
I,
m
PV = nRT, where R = 8.31 J/mole-K
Maximum Velocity, Acceleration:
A2n f
Ao = A(2nf}
Umax = A@ =
a max =
PV = constant,
PIV1 = P2V2
A = (27 f)
а max
Intensity:
Simple pendulum:
I= Pav
4ar?
T= 2n=
Doppler Shift:
Moving observer: f' = f(v+vo)/v
Speed sound temperature:
Moving source: f' = f(v)/ ( v-vs)
v= f2
Where vo = velocity of observer, vs is the
speed of the source, and v is the
speed of sound
T
U = (331m/s),
273K
Intensity of a wave:
power
Beat frequency fB
\f2- fil
I=
%3D
area
A
bol
Transcribed Image Text:Intensity level: m T = 2n, k B=10log I. Frequency: f = T Intensity level difference: Angular frequency: k w = 2n f AB =10log I, m PV = nRT, where R = 8.31 J/mole-K Maximum Velocity, Acceleration: A2n f Ao = A(2nf} Umax = A@ = a max = PV = constant, PIV1 = P2V2 A = (27 f) а max Intensity: Simple pendulum: I= Pav 4ar? T= 2n= Doppler Shift: Moving observer: f' = f(v+vo)/v Speed sound temperature: Moving source: f' = f(v)/ ( v-vs) v= f2 Where vo = velocity of observer, vs is the speed of the source, and v is the speed of sound T U = (331m/s), 273K Intensity of a wave: power Beat frequency fB \f2- fil I= %3D area A bol
Area of circle: A = Tr?
Rate of flow
Q = Av
t = F(sin0)r
T = Fl, wherel= lever arm
Bernoulli's equation:
1
P+
+ pgy, = P, +
1
pv,´ + pgy,
Equilibrium:
Te = T - 273.15°C
Στ=0
9
T =
-T. +32
5
Non-equilibrium:
5
Tc =-(T, - 32)
Στ= Ια
Тетреrature:
Moment of inertial for a point mass
revolving about a center at a distance r:
ΔL L,ΔΤ
AA = y A,AT Y = 2a
AV = BVAT B = 3a
I= Mr?
Kinetic Energy:
Specific Heat:
Translational: ½ mv²
Rotational: ½ Im?
(J/kg. 'C)
mAT
Q = mc(T, –T,)
Angular speed o =v/r
Qcold
=-Qhot
Tensile strain:
EQ = 0
Latent Heat:
F
AL
L.
Y -Young's modulus
phase change: Q=±mL
Energy Transfer:
ΔΤ
P =
At
Density:
Ar
M
p =
V
(kg/m²)
Thermal conductivity:
Pressure:
(T, – T.)
P = kA
L.
F
P=
A
(Ра)
Hooke's Law:
F =-kx
P = P, + pgh
Acceleration in simple harmonic
motion:
Archimedes' principle:
k
a =
B = P fuidV fa
m
fluid8
Elastic potential energy:
РЕ, %3D
-kx²
2
Equation of flow continuity:
Av, = A,v,
Period:
Transcribed Image Text:Area of circle: A = Tr? Rate of flow Q = Av t = F(sin0)r T = Fl, wherel= lever arm Bernoulli's equation: 1 P+ + pgy, = P, + 1 pv,´ + pgy, Equilibrium: Te = T - 273.15°C Στ=0 9 T = -T. +32 5 Non-equilibrium: 5 Tc =-(T, - 32) Στ= Ια Тетреrature: Moment of inertial for a point mass revolving about a center at a distance r: ΔL L,ΔΤ AA = y A,AT Y = 2a AV = BVAT B = 3a I= Mr? Kinetic Energy: Specific Heat: Translational: ½ mv² Rotational: ½ Im? (J/kg. 'C) mAT Q = mc(T, –T,) Angular speed o =v/r Qcold =-Qhot Tensile strain: EQ = 0 Latent Heat: F AL L. Y -Young's modulus phase change: Q=±mL Energy Transfer: ΔΤ P = At Density: Ar M p = V (kg/m²) Thermal conductivity: Pressure: (T, – T.) P = kA L. F P= A (Ра) Hooke's Law: F =-kx P = P, + pgh Acceleration in simple harmonic motion: Archimedes' principle: k a = B = P fuidV fa m fluid8 Elastic potential energy: РЕ, %3D -kx² 2 Equation of flow continuity: Av, = A,v, Period:
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Fluid Pressure
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
University Physics Volume 1
University Physics Volume 1
Physics
ISBN:
9781938168277
Author:
William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:
OpenStax - Rice University
College Physics
College Physics
Physics
ISBN:
9781938168000
Author:
Paul Peter Urone, Roger Hinrichs
Publisher:
OpenStax College