A long conducting wire with a square cross-section of side length a carries a uniform electric current density J. We are interested in the component of the magnetic field tangential (parallel) to the surface of the conductor. a. What direction does the magnetic field point (cw or ccw) and what is its approximate magnitude (i.e. what is its average magnitude)? b. What method (or law) would you use to find its exact magnitude everywhere over the surface? conductor a

Principles of Physics: A Calculus-Based Text
5th Edition
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Raymond A. Serway, John W. Jewett
Chapter22: Magnetic Forces And Magnetic Fields
Section: Chapter Questions
Problem 51P
icon
Related questions
Question

give answer of a and b.

Question One:
A long conducting wire with a square cross-section of side length a carries a uniform electric current
density J. We are interested in the component of the magnetic field tangential (parallel) to the surface
of the conductor.
a. What direction does the magnetic field point (cw or ccw) and what is its
approximate magnitude (i.e. what is its average magnitude)?
b. What method (or law) would you use to find its exact magnitude everywhere
over the surface?
conductor
c. Is the normal component of the magnetic field exactly zero at the surface? Why or why not?
d. If there also exists a total current I = Ja² flowing out of the page distributed uniformly over the
surface of the conductor, is the magnetic field outside the conductor zero everywhere? Why or
why not?
e. If both the volume current (into the page) and the surface current (out of the page) are present, is
the magnetic field inside the conductor clockwise, counter clockwise, or zero? Justify your answer.
Transcribed Image Text:Question One: A long conducting wire with a square cross-section of side length a carries a uniform electric current density J. We are interested in the component of the magnetic field tangential (parallel) to the surface of the conductor. a. What direction does the magnetic field point (cw or ccw) and what is its approximate magnitude (i.e. what is its average magnitude)? b. What method (or law) would you use to find its exact magnitude everywhere over the surface? conductor c. Is the normal component of the magnetic field exactly zero at the surface? Why or why not? d. If there also exists a total current I = Ja² flowing out of the page distributed uniformly over the surface of the conductor, is the magnetic field outside the conductor zero everywhere? Why or why not? e. If both the volume current (into the page) and the surface current (out of the page) are present, is the magnetic field inside the conductor clockwise, counter clockwise, or zero? Justify your answer.
Expert Solution
steps

Step by step

Solved in 5 steps

Blurred answer
Knowledge Booster
Magnetic field
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers with Modern …
Physics for Scientists and Engineers with Modern …
Physics
ISBN:
9781337553292
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
University Physics Volume 2
University Physics Volume 2
Physics
ISBN:
9781938168161
Author:
OpenStax
Publisher:
OpenStax
Glencoe Physics: Principles and Problems, Student…
Glencoe Physics: Principles and Problems, Student…
Physics
ISBN:
9780078807213
Author:
Paul W. Zitzewitz
Publisher:
Glencoe/McGraw-Hill
Physics for Scientists and Engineers: Foundations…
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning