A one-way both ends continuous slab is to support the moments tabulated. Consider L= 5m. Fc’ = 21MPa and fy = 415MPa.   Dead load Moments: +42KN.m at midspan ;-67KN.m at support;   Live Load Moment: +40KN .m  at midspan; -44KN.m at support.   Determine the spacing of the temperature bars

Fundamentals Of Construction Estimating
4th Edition
ISBN:9781337399395
Author:Pratt, David J.
Publisher:Pratt, David J.
Chapter5: Measuring Concrete Work
Section: Chapter Questions
Problem 3RQ: Why is nothing added to the concrete quantities for wastage at the time of the takeoff?
icon
Related questions
Question

*Subject: Reinforced prestressed concrete - Civil Engineering

*Please refer for my attached formula or guidelines solve this problem

 

 

A one-way both ends continuous slab is to support the moments tabulated. Consider L= 5m. Fc’ = 21MPa and

fy = 415MPa.

 

Dead load Moments: +42KN.m at midspan ;-67KN.m at support;

 

Live Load Moment: +40KN .m  at midspan; -44KN.m at support.

 

Determine the spacing of the temperature bars.

 

MINIMUM THICKNESS OF NON-PRESTRESSED BEAMS
AND ONE WAY SLABS UNLESS DEFLECTIONS ARE
COMPUTED
Solid One-Way Slab
Beams or ribbed
one way slab
Simply
General Procedure
Supported
L/20
Ru
L/16
=
5.
One end continuous
■ For structural lightweight concrete the values shall be multiplied by
(1.65 -0.0005 Wc) but not less than 1.09, where Wc is the unit mass in kg/m³.
■ For fy other 415 MPa, the values shall be multiplied by
(0.4 +fy/700)
PLEASE REFER
5. Compute design constants
Span Length L in millimeters
Values given shall be used directly for members with normal density concrete and
Grade 60 (415 MPa) reinforcement. For other conditions, the values shall be
modified as follows:
Mu
obd 2
L/24
L/18.5
Design of one way slab
Given: Loads, type of slab, fc,fy, WHIS FORMULA AND
Req'd: t, size and spacing of main bars GUIDELINES
temperature bars
1. Determine the minimum slab thickness t using table for minimum
thickness of non prestressed beams and one way slab. This
thickness should be at least 75 mm
2. Compute the weight of the slab (this is to be added to the given
dead load)
3. Calculate the design moment Mu
4. Compute the effective depth d
m =
d = t - covering - ½ bar diameter (minimum of 12 mm)
p>Pmin
Solve for As
0.85 fc'
Both ends continuous
L/28
p=₁
L/21
1
As = pbd
6. Solve for the spacing of bars
m
S =
Cantilever
A1000
A
where : A₁ = area of 1 bar
Use the smallest of the following
b)3t
c) 450 mm
L/10
L/8
2mR.
fy
a)S
7. Solve for area of temperature bars
A₁ = 0.002bt, A₁ = 0.0018bt, A₁ = 0.0018(400)bt/fy
8. Solve for the spacing of temperature bars S₁ = ¹¹1000
A₁
where : A₁ = area of 1 temperature bar (minimum of 10mm dia.)
Use the smallest of the following
a) St
b) 5t
c)450 mm
Transcribed Image Text:MINIMUM THICKNESS OF NON-PRESTRESSED BEAMS AND ONE WAY SLABS UNLESS DEFLECTIONS ARE COMPUTED Solid One-Way Slab Beams or ribbed one way slab Simply General Procedure Supported L/20 Ru L/16 = 5. One end continuous ■ For structural lightweight concrete the values shall be multiplied by (1.65 -0.0005 Wc) but not less than 1.09, where Wc is the unit mass in kg/m³. ■ For fy other 415 MPa, the values shall be multiplied by (0.4 +fy/700) PLEASE REFER 5. Compute design constants Span Length L in millimeters Values given shall be used directly for members with normal density concrete and Grade 60 (415 MPa) reinforcement. For other conditions, the values shall be modified as follows: Mu obd 2 L/24 L/18.5 Design of one way slab Given: Loads, type of slab, fc,fy, WHIS FORMULA AND Req'd: t, size and spacing of main bars GUIDELINES temperature bars 1. Determine the minimum slab thickness t using table for minimum thickness of non prestressed beams and one way slab. This thickness should be at least 75 mm 2. Compute the weight of the slab (this is to be added to the given dead load) 3. Calculate the design moment Mu 4. Compute the effective depth d m = d = t - covering - ½ bar diameter (minimum of 12 mm) p>Pmin Solve for As 0.85 fc' Both ends continuous L/28 p=₁ L/21 1 As = pbd 6. Solve for the spacing of bars m S = Cantilever A1000 A where : A₁ = area of 1 bar Use the smallest of the following b)3t c) 450 mm L/10 L/8 2mR. fy a)S 7. Solve for area of temperature bars A₁ = 0.002bt, A₁ = 0.0018bt, A₁ = 0.0018(400)bt/fy 8. Solve for the spacing of temperature bars S₁ = ¹¹1000 A₁ where : A₁ = area of 1 temperature bar (minimum of 10mm dia.) Use the smallest of the following a) St b) 5t c)450 mm
Expert Solution
steps

Step by step

Solved in 4 steps

Blurred answer
Knowledge Booster
Connections
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Fundamentals Of Construction Estimating
Fundamentals Of Construction Estimating
Civil Engineering
ISBN:
9781337399395
Author:
Pratt, David J.
Publisher:
Cengage,