A piston-cylinder device contains an ideal gas of nitrogen. At the initial state, the volume is V₁= 1.00 m³, the pressure is p₁= 400.00 kPa, the temperature is T₁=300.00 K. An electric heater within the device is turned on for a time of At = 5.00 min. The current is 1 = 3.00 A, and the source voltage is V = 120.00 V. During the heating process, the gas expands, and a heat loss of Qout = 2.80 kJ occurs. The gas constant is R = 0.297 kPa-m³/(kg-K), and the room temperature specific heat at constant pressure is cp =1.039 kJ/(kg-K). Calculate the final state temperature, T2. (K)

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
100%
A piston-cylinder device contains an ideal gas of nitrogen. At the initial state, the volume is V₁ = 1.00 m³, the pressure is p₁= 400.00 kPa, the temperature is T₁=300.00 K. An electric heater within
the device is turned on for a time of At = 5.00 min. The current is I = 3.00 A, and the source voltage is V = 120.00 V. During the heating process, the gas expands, and a heat loss of Qout = 2.80 kJ
occurs. The gas constant is R = 0.297 kPa m³/(kg-K), and the room temperature specific heat at constant pressure is cp =1.039 kJ/(kg-K).
Calculate the final state temperature, T2.
(K)
Gas
Transcribed Image Text:A piston-cylinder device contains an ideal gas of nitrogen. At the initial state, the volume is V₁ = 1.00 m³, the pressure is p₁= 400.00 kPa, the temperature is T₁=300.00 K. An electric heater within the device is turned on for a time of At = 5.00 min. The current is I = 3.00 A, and the source voltage is V = 120.00 V. During the heating process, the gas expands, and a heat loss of Qout = 2.80 kJ occurs. The gas constant is R = 0.297 kPa m³/(kg-K), and the room temperature specific heat at constant pressure is cp =1.039 kJ/(kg-K). Calculate the final state temperature, T2. (K) Gas
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Knowledge Booster
Work and Heat
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY