A total of 10 rectangular aluminum fins (k = 203 W/m-K) are placed on the outside flat surface of an electronic device. Each fin is 100 mm wide, 20 mm high and 4 mm thick. The fins are located parallel to each other at a center-to center distance of 8 mm. The temperature at the outside surface of the electronic device is 60°C. The air is at 20°C, and the heat transfer coefficient is 100 W/m? ‘K. Determine (a) the rate of heat loss from the electronic device to the surrounding air and (b) the fin effectiveness.

Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
8th Edition
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Kreith, Frank; Manglik, Raj M.
Chapter3: Transient Heat Conduction
Section: Chapter Questions
Problem 3.10P: 3.10 A spherical shell satellite (3-m-OD, 1.25-cm-thick stainless steel walls) re-enters the...
icon
Related questions
Question
A total of 10 rectangular aluminum fins (k = 203 W/m-K) are placed on the outside flat surface of an electronic device. Each fin is 100 mm wide, 20 mm high and 4 mm thick. The fins are located parallel to each other at a center-to center distance of 8 mm. The temperature at the outside surface of the electronic device is 60°C. The air is at 20°C, and the heat transfer coefficient is 100 W/m? ‘K. Determine (a) the rate of heat loss from the electronic device to the surrounding air and (b) the fin effectiveness.
A total of 10 rectangular aluminum fins (k = 203
W/m-K) are placed on the outside flat surface of an
electronic device. Each fin is 100 mm wide, 20 mm
high and 4 mm thick. The fins are located parallel to
each other at a center-to center distance of 8 mm.
The temperature at the outside surface of the
electronic device is 60°C. The air is at 20°C, and the
heat transfer coefficient is 100 W/m2 K. Determine
(a) the rate of heat loss from the electronic device to
the surrounding air and
(b) the fin effectiveness.
Transcribed Image Text:A total of 10 rectangular aluminum fins (k = 203 W/m-K) are placed on the outside flat surface of an electronic device. Each fin is 100 mm wide, 20 mm high and 4 mm thick. The fins are located parallel to each other at a center-to center distance of 8 mm. The temperature at the outside surface of the electronic device is 60°C. The air is at 20°C, and the heat transfer coefficient is 100 W/m2 K. Determine (a) the rate of heat loss from the electronic device to the surrounding air and (b) the fin effectiveness.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 1 images

Blurred answer
Knowledge Booster
Composite Materials
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Heat Transfer (Activate Learning wi…
Principles of Heat Transfer (Activate Learning wi…
Mechanical Engineering
ISBN:
9781305387102
Author:
Kreith, Frank; Manglik, Raj M.
Publisher:
Cengage Learning