300°C steam flows in a stainless-steel (ss.) pipe with thermal conductivity of 50 W/m.K. The pipe has internal diameter (ID) of 40 cm, and outer diameter (OD) of 42 cm. The pipe is placed in another ss. pipe with ID and OD 44 cm and 44.2 cm, respectively. The gap between the pipes is filled with steel air (use air properties at 160°C from appendix). The convection heat transfer coefficient at the inner and the outer surfaces of the pipe is hi = 40 W/m2. K and h2= 15 W/m2. K. Determine the rate of heat loss if the length of the pipe is 10 m. Also determine the temperature at inside, intermediate and outer surfaces.

Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
8th Edition
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Kreith, Frank; Manglik, Raj M.
Chapter3: Transient Heat Conduction
Section: Chapter Questions
Problem 3.10P: 3.10 A spherical shell satellite (3-m-OD, 1.25-cm-thick stainless steel walls) re-enters the...
icon
Related questions
Question
300°C steam flows in a stainless-steel (ss.) pipe with thermal conductivity of
50 W/m.K. The pipe has internal diameter (ID) of 40 cm, and outer diameter (OD) of 42 cm.
The pipe is placed in another ss. pipe with ID and OD 44 cm and 44.2 cm, respectively. The
gap between the pipes is filled with steel air (use air properties at 160°C from appendix). The
convection heat transfer coefficient at the inner and the outer surfaces of the pipe is
hi = 40 W/m2. K and h2= 15 W/m?. K. Determine the rate of heat loss if the length of the pipe
%3!
is 10 m. Also determine the temperature at inside, intermediate and outer surfaces.
Transcribed Image Text:300°C steam flows in a stainless-steel (ss.) pipe with thermal conductivity of 50 W/m.K. The pipe has internal diameter (ID) of 40 cm, and outer diameter (OD) of 42 cm. The pipe is placed in another ss. pipe with ID and OD 44 cm and 44.2 cm, respectively. The gap between the pipes is filled with steel air (use air properties at 160°C from appendix). The convection heat transfer coefficient at the inner and the outer surfaces of the pipe is hi = 40 W/m2. K and h2= 15 W/m?. K. Determine the rate of heat loss if the length of the pipe %3! is 10 m. Also determine the temperature at inside, intermediate and outer surfaces.
TABLE A-15
Properties of air at 1 atm pressure
Kinematic
Viscosity
v, m²/s
Prandtl
Specific
Heat
Thermal
Thermal
Dynamic
Viscosity
Temp.
T, °C
Density
p, kg/m3
Conductivity
k, W/m-K
Diffusivity
Number
Cp, J/kg-K
a, m?/s
H, kg/m-s
Pr
983
966
3.013 x 10-6
5.837 x 10-6
9.319 x 10-6
1.008 x 10-5
1.087 x 10-5
1.169 x 10-5
1.252 x 10-5
1.338 x 10-5
1.382 x 10-5
1.426 x 10-5
1.470 x 10-5
1.516 x 10-5
0.01171
4.158 x 10-6
8.036 x 10-6
1.252 x 10-5
1.356 x 10-5
1.465 x 10-5
1.578 x 10-5
1.696 x 10-5
1.818 x 10-5
1.880 x 10-5
1.944 x 10-5
2.009 x 10-5
2.074 x 10-5
-150
2.866
8.636 x 10-6
0.7246
-100
2.038
0.01582
0.01979
1.189 x 10-5
0.7263
1.474 x 10-5
1.527 x 10-5
1.579 x 10-5
1.630 x 10-5
1.680 x 10-5
1.729 x 10-5
-50
1.582
999
0.7440
1.514
1.451
1.394
40
1002
1004
0.02057
0.02134
0.7436
-30
0.7425
1005
1006
1006
1006
-20
-10
0.02211
0.02288
0.7408
1.341
1.292
0.7387
0.02364
0.7362
1.754 x 10-5
1.778 x 10-5
1.802 x 10-5
5
1.269
0.02401
0.7350
10
1.246
1.225
1.204
1006
0.02439
0.7336
15
1007
0.02476
0.7323
0.02514
0.02551
1007
1007
1007
1007
1007
20
1.825 x 10-5
0.7309
2.141 x 10-5
2.208 x 10-5
2.277 x 10-5
2.346 x 10-5
2.416 x 10-5
2.487 x 10-5
1.849 x 10-5
1.872 x 10-5
1.895 x 10-5
1.562 x 10-5
1.608 x 10-5
1.655 x 10-5
25
1.184
1.164
1.145
0.7296
0.7282
30
0.02588
35
0.02625
0.7268
1.702 x 10-5
1.750 x 10-5
1.798 x 10-5
1.896 x 10-5
1.995 x 10-5
40
1.127
0.02662
1.918 x 10-5
0.7255
1.941 x 10-5
1.963 x 10-5
2.008 x 10-5
2.052 x 10-5
2.096 x 10-5
2.139 x 10-5
45
1.109
1.092
1007
1007
1007
0.02699
0.7241
50
0.02735
0.02808
0.02881
0.7228
60
1.059
2.632 x 10-5
0.7202
0.7177
2.780 x 10-5
2.931 x 10-5
3.086 x 10-5
3.243 x 10-5
3.565 x 10-5
3.898 x 10-5
4.241 x 10-5
4.593 x 10-5
4.954 x 10-5
5.890 x 10-5
6.871 x 10-5
7.892 x 10-5
70
1.028
1007
2.097 x 10-5
2.201 x 10-5
2.306 x 10-5
2.522 x 10-5
80
0.9994
1008
0.02953
0.7154
0.7132
0.7111
0.7073
90
0.9718
0.9458
0.8977
1008
0.03024
2.181 x 10-5
2.264 x 10-5
2.345 x 10-5
2.420 x 10-5
100
1009
0.03095
120
1011
0.03235
0.8542
0.8148
0.7788
2.745 x 10-5
2.975 x 10-5
3.212 x 10-5
3.455 x 10-5
140
1013
0.03374
0.7041
1016
1019
1023
160
0.03511
0.7014
2.504 x 10-5
2.577 x 10-5
180
0.03646
0.6992
200
0.7459
0.6746
0.03779
0.6974
1033
1044
1056
2.760 x 10-5
2.934 x 10-5
4.091 x 10-5
4.765 x 10-5
5.475 x 10-5
6.219 x 10-5
6.997 x 10-5
7.806 x 10-5
9.515 x 10-5
1.133 x 10-4
1.326 x 10-4
1.529 x 10-4
1.741 x 10-4
2.922 x 10-4
4.270 x 10-4
250
300
0.04104
0.6946
0.6158
0.04418
0.6935
3.101 x 10-5
3.261 x 10-5
3.415 x 10-5
3.563 x 10-5
3.846 x 10-5
350
0.5664
0.04721
0.6937
8.951 x 10-5
1.004 x 10-4
1.117 x 10-4
1.352 x 10-4
1.598 x 10-4
1.855 x 10-4
2.122 x 10-4
2.398 x 10-4
3.908 x 10-4
5.664 x 10-4
0.05015
0.05298
400
0.5243
1069
0.6948
450
0.4880
1081
0.6965
500
600
700
0.4565
0.4042
0.05572
0.06093
0.6986
0.7037
1093
1115
4.111 x 10-5
4.362 x 10-5
4.600 x 10-5
4.826 x 10-5
0.3627
1135
0.06581
0.7092
800
0.3289
1153
0.07037
0.7149
900
1000
1169
1184
1234
1264
0.3008
0.07465
0.7206
0.2772
0.1990
0.1553
0.07868
0.7260
1500
0.09599
5.817 x 10-5
0.7478
0.7539
2000
0.11113
6.630 x 10-5
Note. For ideal gases, the properties Cp, k, u, and Pr are independent of pressure. The properties p, v, and a at a pressure P (in atm) other than 1 atm are determined
by multiplying the values of e at the given temperature by Pand by dividing v and a by P.
Transcribed Image Text:TABLE A-15 Properties of air at 1 atm pressure Kinematic Viscosity v, m²/s Prandtl Specific Heat Thermal Thermal Dynamic Viscosity Temp. T, °C Density p, kg/m3 Conductivity k, W/m-K Diffusivity Number Cp, J/kg-K a, m?/s H, kg/m-s Pr 983 966 3.013 x 10-6 5.837 x 10-6 9.319 x 10-6 1.008 x 10-5 1.087 x 10-5 1.169 x 10-5 1.252 x 10-5 1.338 x 10-5 1.382 x 10-5 1.426 x 10-5 1.470 x 10-5 1.516 x 10-5 0.01171 4.158 x 10-6 8.036 x 10-6 1.252 x 10-5 1.356 x 10-5 1.465 x 10-5 1.578 x 10-5 1.696 x 10-5 1.818 x 10-5 1.880 x 10-5 1.944 x 10-5 2.009 x 10-5 2.074 x 10-5 -150 2.866 8.636 x 10-6 0.7246 -100 2.038 0.01582 0.01979 1.189 x 10-5 0.7263 1.474 x 10-5 1.527 x 10-5 1.579 x 10-5 1.630 x 10-5 1.680 x 10-5 1.729 x 10-5 -50 1.582 999 0.7440 1.514 1.451 1.394 40 1002 1004 0.02057 0.02134 0.7436 -30 0.7425 1005 1006 1006 1006 -20 -10 0.02211 0.02288 0.7408 1.341 1.292 0.7387 0.02364 0.7362 1.754 x 10-5 1.778 x 10-5 1.802 x 10-5 5 1.269 0.02401 0.7350 10 1.246 1.225 1.204 1006 0.02439 0.7336 15 1007 0.02476 0.7323 0.02514 0.02551 1007 1007 1007 1007 1007 20 1.825 x 10-5 0.7309 2.141 x 10-5 2.208 x 10-5 2.277 x 10-5 2.346 x 10-5 2.416 x 10-5 2.487 x 10-5 1.849 x 10-5 1.872 x 10-5 1.895 x 10-5 1.562 x 10-5 1.608 x 10-5 1.655 x 10-5 25 1.184 1.164 1.145 0.7296 0.7282 30 0.02588 35 0.02625 0.7268 1.702 x 10-5 1.750 x 10-5 1.798 x 10-5 1.896 x 10-5 1.995 x 10-5 40 1.127 0.02662 1.918 x 10-5 0.7255 1.941 x 10-5 1.963 x 10-5 2.008 x 10-5 2.052 x 10-5 2.096 x 10-5 2.139 x 10-5 45 1.109 1.092 1007 1007 1007 0.02699 0.7241 50 0.02735 0.02808 0.02881 0.7228 60 1.059 2.632 x 10-5 0.7202 0.7177 2.780 x 10-5 2.931 x 10-5 3.086 x 10-5 3.243 x 10-5 3.565 x 10-5 3.898 x 10-5 4.241 x 10-5 4.593 x 10-5 4.954 x 10-5 5.890 x 10-5 6.871 x 10-5 7.892 x 10-5 70 1.028 1007 2.097 x 10-5 2.201 x 10-5 2.306 x 10-5 2.522 x 10-5 80 0.9994 1008 0.02953 0.7154 0.7132 0.7111 0.7073 90 0.9718 0.9458 0.8977 1008 0.03024 2.181 x 10-5 2.264 x 10-5 2.345 x 10-5 2.420 x 10-5 100 1009 0.03095 120 1011 0.03235 0.8542 0.8148 0.7788 2.745 x 10-5 2.975 x 10-5 3.212 x 10-5 3.455 x 10-5 140 1013 0.03374 0.7041 1016 1019 1023 160 0.03511 0.7014 2.504 x 10-5 2.577 x 10-5 180 0.03646 0.6992 200 0.7459 0.6746 0.03779 0.6974 1033 1044 1056 2.760 x 10-5 2.934 x 10-5 4.091 x 10-5 4.765 x 10-5 5.475 x 10-5 6.219 x 10-5 6.997 x 10-5 7.806 x 10-5 9.515 x 10-5 1.133 x 10-4 1.326 x 10-4 1.529 x 10-4 1.741 x 10-4 2.922 x 10-4 4.270 x 10-4 250 300 0.04104 0.6946 0.6158 0.04418 0.6935 3.101 x 10-5 3.261 x 10-5 3.415 x 10-5 3.563 x 10-5 3.846 x 10-5 350 0.5664 0.04721 0.6937 8.951 x 10-5 1.004 x 10-4 1.117 x 10-4 1.352 x 10-4 1.598 x 10-4 1.855 x 10-4 2.122 x 10-4 2.398 x 10-4 3.908 x 10-4 5.664 x 10-4 0.05015 0.05298 400 0.5243 1069 0.6948 450 0.4880 1081 0.6965 500 600 700 0.4565 0.4042 0.05572 0.06093 0.6986 0.7037 1093 1115 4.111 x 10-5 4.362 x 10-5 4.600 x 10-5 4.826 x 10-5 0.3627 1135 0.06581 0.7092 800 0.3289 1153 0.07037 0.7149 900 1000 1169 1184 1234 1264 0.3008 0.07465 0.7206 0.2772 0.1990 0.1553 0.07868 0.7260 1500 0.09599 5.817 x 10-5 0.7478 0.7539 2000 0.11113 6.630 x 10-5 Note. For ideal gases, the properties Cp, k, u, and Pr are independent of pressure. The properties p, v, and a at a pressure P (in atm) other than 1 atm are determined by multiplying the values of e at the given temperature by Pand by dividing v and a by P.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Convection
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Heat Transfer (Activate Learning wi…
Principles of Heat Transfer (Activate Learning wi…
Mechanical Engineering
ISBN:
9781305387102
Author:
Kreith, Frank; Manglik, Raj M.
Publisher:
Cengage Learning