- Air at 105 kPa and 37°C flows upward through a 6-cm-diameter inclined duct at a rate of Q (L/s). The density of air at this temperature and pressure is 1.10 Kg/m³. The duct diameter is then reduced to 4 cm through a reducer. The pressure change across the reducer is measured by a water manometer. The elevation difference between the two points on the pipe where the two arms of the manometer are attached is 0.20 m. Determine the differential height between the fluid levels of the two arms of the manometer. Air Q (L/s) 90

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
20.3 cm diam
2.44 m
1.22 m
Water
Air at 105 kPa and 37°C flows upward through a
6-cm-diameter inclined duct at a rate of Q (L/s).
The density of air at this temperature and pressure
is 1.10 Kg/m³. The duct diameter is then reduced
to 4 cm through a reducer. The pressure change
across the reducer is measured by a water
Air
manometer. The elevation difference between the
two points on the pipe where the two arms of the
manometer are attached is 0.20 m. Determine the
differential height between the fluid levels of the
two arms of the manometer.
Q (L/s)
90
Transcribed Image Text:20.3 cm diam 2.44 m 1.22 m Water Air at 105 kPa and 37°C flows upward through a 6-cm-diameter inclined duct at a rate of Q (L/s). The density of air at this temperature and pressure is 1.10 Kg/m³. The duct diameter is then reduced to 4 cm through a reducer. The pressure change across the reducer is measured by a water Air manometer. The elevation difference between the two points on the pipe where the two arms of the manometer are attached is 0.20 m. Determine the differential height between the fluid levels of the two arms of the manometer. Q (L/s) 90
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Compressible Flow
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY