Air at 305 K flows at 4 m/s over a flat plate at 350 K. The air properties are as follows: density =1.1 kg/m3, viscosity =18.1×10−6 Pa.s, specific heat capacity =1005 J/kgK, and thermal conductivity =0.024 W/mK. The velocity and temperature profiles are assumed to be linear, giving the local Nusselt number to be Nux = 0.289 Rex1/ 2Pr1/3. The flow will become turbulent at a Reynolds number of 5×105. Assume the width of the plate perpendicular to the air flow is 1 m. At what distance from the leading edge does the flow become turbulent? ________m What is the heat transfer at the point of transition? ___________W What is the total heat transfer along the length of the plate where the flow is laminar? __________W

Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
8th Edition
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Kreith, Frank; Manglik, Raj M.
Chapter5: Analysis Of Convection Heat Transfer
Section: Chapter Questions
Problem 5.58P
icon
Related questions
Question

Air at 305 K flows at 4 m/s over a flat plate at 350 K. The air properties are as follows: density =1.1 kg/m3, viscosity =18.1×10−6 Pa.s, specific heat capacity =1005 J/kgK, and thermal conductivity =0.024 W/mK. The velocity and temperature profiles are assumed to be linear, giving the local Nusselt number to be Nux = 0.289 Rex1/ 2Pr1/3. The flow will become turbulent at a Reynolds number of 5×105. Assume the width of the plate perpendicular to the air flow is 1 m.

 

  1. At what distance from the leading edge does the flow become turbulent? ________m
  2. What is the heat transfer at the point of transition? ___________W
  3. What is the total heat transfer along the length of the plate where the flow is laminar? __________W
Expert Solution
steps

Step by step

Solved in 5 steps with 5 images

Blurred answer
Knowledge Booster
Convection
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Heat Transfer (Activate Learning wi…
Principles of Heat Transfer (Activate Learning wi…
Mechanical Engineering
ISBN:
9781305387102
Author:
Kreith, Frank; Manglik, Raj M.
Publisher:
Cengage Learning