An arbitrarily curved wire that carries a current between two endpoints in the presence of a uniform magnetic field will experience the same net magnetic force as a straight wire carrying the same current between the same endpoints. Essentially, any forces experienced by parts of the wire that curve or twist away from the straight-line path are canceled out by forces on sections that curve back toward the original path. Furthermore, if the wire forms a closed loop in between the endpoints, the net force on the closed loop is zero. Using this result, consider a town where the Earth's magnetic field has a magnitude of 53.3 µT. The magnetic field vector lies in a vertical plane defined by the north-south and up-down axes, and it points 60.0° below the northward direction. In this town, a storefront window lies along the north-south vertical plane, and in the window is a neon sign (which is a thin current-carrying discharge tube). The sign carries a 35.4 mA current, starting from the lower south corner of the window, and ending at the opposite corner, which is 1.39 m to the north and 0.850 m upward. The sign spells out the word "OPEN" between the two points. What is the net vector magnetic force (in µN) on the neon sign? (Take east to be the +x-axis, up to be the +y-axis, and south to be the +z-axis. Do not include units in your answer.)

Physics for Scientists and Engineers: Foundations and Connections
1st Edition
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Katz, Debora M.
Chapter31: Gauss’s Law For Magnetism And Ampère’s Law
Section: Chapter Questions
Problem 72PQ
icon
Related questions
Question
An arbitrarily curved wire that carries a current between two endpoints in the presence of a uniform magnetic field will experience the same net magnetic force as a straight wire carrying the same current between the same endpoints. Essentially, any forces experienced by parts of the wire that curve or twist away from the straight-line path are canceled out by forces on sections that curve back toward the original path. Furthermore, if the wire forms a closed loop in between the endpoints, the net force on the closed loop is zero.
Using this result, consider a town where the Earth's magnetic field has a magnitude of 53.3 µT. The magnetic field vector lies in a vertical plane defined by the north-south and up-down axes, and it points 60.0° below the northward direction. In this town, a storefront window lies along the north-south vertical plane, and in the window is a neon sign (which is a thin current-carrying discharge tube). The sign carries a 35.4 mA current, starting from the lower south corner of the window, and ending at the opposite corner, which is 1.39 m to the north and 0.850 m upward. The sign spells out the word "OPEN" between the two points. What is the net vector magnetic force (in µN) on the neon sign? (Take east to be the +x-axis, up to be the +y-axis, and south to be the +z-axis. Do not include units in your answer.)
 
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Magnetic field
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Physics for Scientists and Engineers: Foundations…
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers with Modern …
Physics for Scientists and Engineers with Modern …
Physics
ISBN:
9781337553292
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
College Physics
College Physics
Physics
ISBN:
9781285737027
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning