An object of mass, m = 56 kg starts to slide from rest on a curved ramp from height, H = 37 m above the end of the ramp (as shown in the figure). Consider the ramp to be frictionless and neglect the effects of air resistance. %3D H yend of ramp (a) What is the speed of the object at the end of the ramp? (b) If the velocity of the object at the end of the ramp makes an angle 0 = 21° with the horizontal, what is maximum height, h of its jump above the end of the ramp?

University Physics Volume 1
18th Edition
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:William Moebs, Samuel J. Ling, Jeff Sanny
Chapter8: Potential Energy And Conservation Of Energy
Section: Chapter Questions
Problem 17CQ: Neglecting air resistance, how much would I have to raise the vertical height if I wanted to double...
icon
Related questions
Topic Video
Question
An object of mass, m = 56 kg starts to slide from rest on a curved ramp from
height, H = 37 m above the end of the ramp (as shown in the figure). Consider
the ramp to be frictionless and neglect the effects of air resistance.
%3D
H
yend of ramp
(a) What is the speed of the object at the end of the ramp?
(b) If the velocity of the object at the end of the ramp makes an angle 0 = 21°
with the horizontal, what is maximum height, h of its jump above the end of
the ramp?
Transcribed Image Text:An object of mass, m = 56 kg starts to slide from rest on a curved ramp from height, H = 37 m above the end of the ramp (as shown in the figure). Consider the ramp to be frictionless and neglect the effects of air resistance. %3D H yend of ramp (a) What is the speed of the object at the end of the ramp? (b) If the velocity of the object at the end of the ramp makes an angle 0 = 21° with the horizontal, what is maximum height, h of its jump above the end of the ramp?
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Momentum
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
University Physics Volume 1
University Physics Volume 1
Physics
ISBN:
9781938168277
Author:
William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:
OpenStax - Rice University