An oval racing track with curves of radius 2230 m that are banked at an angle of 23.0°. The size of the track allows for race cars to achieve speeds in excess of 500 km/h. An unintended consequence of the banked curves and high speeds is that race car drivers experience excessive G forces, especially in the "vertical" direction (with respect to their body position), causing dizziness and loss of consciousness. (a) A daring driver, pushing his car to the limit, experiences 5g of centripetal acceleration during one banking maneuver. What is the speed of his car during the maneuver? (Give your answer in km/h.)   (b) If the driver is seated so that during the banking maneuver his upper body is aligned with the direction normal to the banked curve, what is the magnitude of the component of the centripetal acceleration along the driver's upper body? (Give your answer in terms of g.)

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
Question
An oval racing track with curves of radius 2230 m that are banked at an angle of 23.0°. The size of the track allows for race cars to achieve speeds in excess of 500 km/h. An unintended consequence of the banked curves and high speeds is that race car drivers experience excessive G forces, especially in the "vertical" direction (with respect to their body position), causing dizziness and loss of consciousness.
(a)
A daring driver, pushing his car to the limit, experiences 5g of centripetal acceleration during one banking maneuver. What is the speed of his car during the maneuver? (Give your answer in km/h.)
 
(b)
If the driver is seated so that during the banking maneuver his upper body is aligned with the direction normal to the banked curve, what is the magnitude of the component of the centripetal acceleration along the driver's upper body? (Give your answer in terms of g.)
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Centripetal force
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON