An underdamped shock absorber is to be designed for a motorcycle of mass 200 kg (Fig. 2.30(a)). When the shock absorber is subjected to an initial vertical velocity due to a road bump, the resulting displacement-time curve is to be as indicated in Fig. 2.30(b). Find the necessary stiffness and damping constants of the shock absorber if the damped period of vibration is to be 2s and the amplitude x1 is to be reduced to one-fourth in one half cycle. Also find the minimum initial velocity that leads to a maximum displacement of 250 mm.

Refrigeration and Air Conditioning Technology (MindTap Course List)
8th Edition
ISBN:9781305578296
Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Chapter1: Heat, Temperature, And Pressure
Section: Chapter Questions
Problem 17RQ: Convert 22C to Fahrenheit.
icon
Related questions
Question
An underdamped shock absorber is to be designed for a motorcycle of mass 200 kg (Fig. 2.30(a)). When the shock absorber is subjected to an initial vertical velocity due to a road bump, the resulting displacement-time curve is to be as indicated in Fig. 2.30(b). Find the necessary stiffness and damping constants of the shock absorber if the damped period of vibration is to be 2s and the amplitude x1 is to be reduced to one-fourth in one half cycle. Also find the minimum initial velocity that leads to a maximum displacement of 250 mm.
00000
Transcribed Image Text:00000
Expert Solution
steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Free Damped Vibrations
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Refrigeration and Air Conditioning Technology (Mi…
Refrigeration and Air Conditioning Technology (Mi…
Mechanical Engineering
ISBN:
9781305578296
Author:
John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:
Cengage Learning