B) A reversible heat engine operates between two reservoirs at temperatures of 600°C and 40°C. The engine drives a reversible refrigerator which operates between reservoirs at temperatures of 40°C and -20°C. The heat transfer to the heat engine is 2000 kJ and the net work output for the combined engine refrigerator is 360 kJ. (i) Calculate the heat transfer to the refrigerant and the net heat transfer to the reservoir at 40°C. (ii) Reconsider (i) given that the efficiency of the heat engine and the C.O.P. of the refrigerator are each 40 per cent of their maximum possible values.

Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
8th Edition
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Kreith, Frank; Manglik, Raj M.
Chapter8: Natural Convection
Section: Chapter Questions
Problem 8.46P
icon
Related questions
Question
B) A reversible heat engine operates between two reservoirs at temperatures of 600°C and
40°C. The engine drives a reversible refrigerator which operates between reservoirs at
temperatures of 40°C and -20°C. The heat transfer to the heat engine is 2000 kJ and the net
work output for the combined engine refrigerator is 360 kJ. (i) Calculate the heat transfer to
the refrigerant and the net heat transfer to the reservoir at 40°C. (ii) Reconsider (i) given that
the efficiency of the heat engine and the C.O.P. of the refrigerator are each 40 per cent of
their maximum possible values.
Transcribed Image Text:B) A reversible heat engine operates between two reservoirs at temperatures of 600°C and 40°C. The engine drives a reversible refrigerator which operates between reservoirs at temperatures of 40°C and -20°C. The heat transfer to the heat engine is 2000 kJ and the net work output for the combined engine refrigerator is 360 kJ. (i) Calculate the heat transfer to the refrigerant and the net heat transfer to the reservoir at 40°C. (ii) Reconsider (i) given that the efficiency of the heat engine and the C.O.P. of the refrigerator are each 40 per cent of their maximum possible values.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 6 steps with 6 images

Blurred answer
Knowledge Booster
Refrigeration and Air Conditioning
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Heat Transfer (Activate Learning wi…
Principles of Heat Transfer (Activate Learning wi…
Mechanical Engineering
ISBN:
9781305387102
Author:
Kreith, Frank; Manglik, Raj M.
Publisher:
Cengage Learning
Refrigeration and Air Conditioning Technology (Mi…
Refrigeration and Air Conditioning Technology (Mi…
Mechanical Engineering
ISBN:
9781305578296
Author:
John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:
Cengage Learning