By how much will the temperature of the tissue increase ?  answer in K.  show steps on how you solved it

Inquiry into Physics
8th Edition
ISBN:9781337515863
Author:Ostdiek
Publisher:Ostdiek
Chapter8: Electromagnetism And Em Waves
Section: Chapter Questions
Problem 3Q: (Indicates a review question, which means it requires only a basic understanding of the material to...
icon
Related questions
icon
Concept explainers
Question

By how much will the temperature of the tissue increase ? 
answer in K. 
show steps on how you solved it 

mane pe
How much energy is dissipated in the loop? Assume that muscle tissue has resistivity 13 2 m, density
1.1 x 10³ kg/m³, and specific heat 3600 J/(kg. K).
W 5.2x10-9 J
W
Wha
mammoni
Transcribed Image Text:mane pe How much energy is dissipated in the loop? Assume that muscle tissue has resistivity 13 2 m, density 1.1 x 10³ kg/m³, and specific heat 3600 J/(kg. K). W 5.2x10-9 J W Wha mammoni
Currents induced by rapid field changes in an MRI
solenoid can, in some cases, heat tissues in the body,
but under normal circumstances the heating is small. We
can do a quick estimate to show this. Consider the "loop"
of muscle tissue shown in the figure. This might be
muscle circling the bone of your arm or leg. Muscle tissue
is not a great conductor, but current will pass through
muscle and so we can consider this a conducting loop
with a rather high resistance. Suppose the magnetic field
along the axis of the loop drops from 1.6 T to 0 T in
0.30 s, as it might in an MRI solenoid.(Figure 1)
Transcribed Image Text:Currents induced by rapid field changes in an MRI solenoid can, in some cases, heat tissues in the body, but under normal circumstances the heating is small. We can do a quick estimate to show this. Consider the "loop" of muscle tissue shown in the figure. This might be muscle circling the bone of your arm or leg. Muscle tissue is not a great conductor, but current will pass through muscle and so we can consider this a conducting loop with a rather high resistance. Suppose the magnetic field along the axis of the loop drops from 1.6 T to 0 T in 0.30 s, as it might in an MRI solenoid.(Figure 1)
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Kinetic theory of gas
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Inquiry into Physics
Inquiry into Physics
Physics
ISBN:
9781337515863
Author:
Ostdiek
Publisher:
Cengage
University Physics Volume 2
University Physics Volume 2
Physics
ISBN:
9781938168161
Author:
OpenStax
Publisher:
OpenStax
Glencoe Physics: Principles and Problems, Student…
Glencoe Physics: Principles and Problems, Student…
Physics
ISBN:
9780078807213
Author:
Paul W. Zitzewitz
Publisher:
Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers, Technology …
Physics for Scientists and Engineers, Technology …
Physics
ISBN:
9781305116399
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning