
College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
thumb_up100%

Transcribed Image Text:Figure 1 is a sectional view of two circular coils with radius a, each wound with N turns of
wire carrying a current 1, circulating in the same direction in both coils. The coils are
separated by a distance a equal to their radii. In this configuration the coils are called
Helmholtz coils; they produce a very uniform magnetic field in the region between them. (a)
Derive the expression for the magnitude B of the magnetic field at a point on the axis a
distance x to the right of point P, which is midway between the coils. (b) From part (a),
obtain an expression for the magnitude of the magnetic at point P. (c) Calculate the
magnitude of the magnetic filed at P if N=300 turns, I = 6.00 A and a = 8.00 cm. (d)
Calculate dB/dx and d²B/dx² at P (x = 0). Discuss how your results show that the field
is very uniform in the vicinity of P.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 4 steps with 4 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A loop of wire with radius r=0.075m is placed in a region of uniform magnetic field with magnitude B. As shown in the figure, the field direction is perpendicular to the plane of the loop. The magnitude of the magnetic field changes at a constant rate from B1=0.55T to B2=1.5T in time Δt=5.5s. The resistance of the wire is R=6Ω A. Calculate, in Tesla squared meters, the magnitude of the change in the magnetic flux. B. Calculate, in volts, the average EMF induced in the loop. C. Calculate, in amperes, current induced in the loop.arrow_forwardThe figure below shows a cross section of a long thin ribbon of width w = 6.42 cm that is carrying a uniformly distributed total current i = 4.76 μA into the page. Calculate the magnitude of the magnetic field at a point P in the plane of the ribbon at a distance d = 2.73 cm from its edge. (Hint: Imagine the ribbon as being constructed from many long, thin, parallel wires.) Number i Units x X X X X -x Warrow_forwardA square coil of wire of side 3.90 cm is placed in a uniform magnetic field of magnitude 2.50 T directed into the page as in the figure shown below. The coil has 39.0 turns and a resistance of 0.780 Ω. If the coil is rotated through an angle of 90.0° about the horizontal axis shown in 0.335 s, find the following. A square coil is shown in the plane of the page, and inside the coil a magnetic field points into the page. A horizontal rotation axis passes through the middle of the square. An arrow indicates that the square rotates clockwise on the axis when viewed from the left. (a) the magnitude of the average emf induced in the coil during this rotation mV(b) the average current induced in the coil during this rotation mAarrow_forward
- Two coils that are separated by a distance equal to their radius and that carry equal currents such that their axial fields add are called Helmholtz coils. A feature of Helmholtz coils is that the resultant magnetic field between the coils is very uniform. Let R = 11.0 cm, I = 23.0 A, and N = 300 turns for each coil. Place one coil in the y-z plane with its center at the origin and the other in a parallel plane at R = 11.0 cm. Calculate the resultant field Bx at x1 = 2.8 cm, x2 = 5.5 cm, x3 = 7.3 cm, and x4= 11.0 cm.arrow_forwardA toroid has a major radius R and a minor radius r and is tightly wound with N turns of wire on a hollow cardboard torus. Figure shows half of this toroid, allowing us to see its cross section. If R >> r, the magnetic field in the region enclosed by the wire is essentially the same as the magnetic field of a solenoid that has been bent into a large circle of radius R. Modeling the field as the uniform field of a long solenoid, show that the inductance of such a toroid is approximatelyarrow_forwardA loop of wire has the shape shown in the drawing. The top part of the wire is bent into a semicircle of radius r = 0.27 m. The normal to the plane of the loop is parallel to a constant magnetic field (φ = 0˚) of magnitude 0.87 T. What is the change ΔΦ in the magnetic flux that passes through the loop when, starting with the position shown in the drawing, the semicircle is rotated through half a revolution?arrow_forward
- A loop of wire has the shape shown in the drawing. The top part of the wire is bent into a semicircle of radius r = 0.22 m. The normal to the plane of the loop is parallel to a constant magnetic field (φ = 0˚) of magnitude 0.90 T. What is the change ΔΦ in the magnetic flux that passes through the loop when, starting with the position shown in the drawing, the semicircle is rotated through half a revolution?arrow_forwardAn electron moves in a circle of radius r = 5.75 x 10-11 m with a speed 1.64 x 106 m/s. Treat the circular path as a current loop with a constant current equal to the ratio of the electron's charge magnitude to the period of the motion. If the circle lies in a uniform magnetic field of magnitude B = 6.96 mT, what is the maximum possible magnitude of the torque produced on the loop by the field? Number i Unitsarrow_forwardA coaxial cable is constructed from a central cylindrical conductor of radius rA = 1.40 cm carrying current IA = 8.90 A in the positive x direction and a concentric conducting cylindrical shell with inner radius rB = 14.0 cm and outer radius rC = 15.0 cm with a current of 15.0 A in the negative x direction (see figure below). What are the magnitude and direction of the magnetic field at the following points? (a) at point O, a distance of 10.0 cm from the center of the coaxial cable along the y axis magnitude µT direction ---Select--- +x −x +y −y +z −z The magnitude is zero. (b) at point P, a distance of 20.0 cm from the center of the coaxial cable along the y axis magnitude µT direction ---Select--- +x −x +y −y +z −z The magnitude is zero.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley

College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON