For the simply supported beam subjected to the loading shown, derive equations for the shear force V and the bending moment M for any location in the beam. (Place the origin at point A.) Let w = 20.0 kips/ft, a=6.0 ft, and b=20.5 ft. Construct the shear-force and bending-moment diagrams on paper and use the results to answer the questions in the subsequent parts of this GO exercise. A a B W B b Calculate the reaction forces By and Cy acting on the beam. Positive values for the reactions are indicated by the directions of the red arrows shown on the free-body diagram below. (Note: Since Bx = 0, it has been omitted from the free-body diagram.) W b C X Cy

International Edition---engineering Mechanics: Statics, 4th Edition
4th Edition
ISBN:9781305501607
Author:Andrew Pytel And Jaan Kiusalaas
Publisher:Andrew Pytel And Jaan Kiusalaas
Chapter6: Beams And Cables
Section: Chapter Questions
Problem 6.42P: For the beam AB shown in Cases 1 and 2, derive and plot expressions for the shear force and bending...
icon
Related questions
Question
Use your shear-force and bending-moment diagrams to determine the maximum positive bending moment, Mmax, pos, the
maximum negative bending moment, Mmax, neg, and their respective locations, Xmax, pos and Xmax, neg. Use the bending-moment sign
convention detailed in Section 7.2. The maximum negative bending moment is the negative moment with the largest absolute
value. Enter the maximum negative bending moment as a negative value.
Answers:
Mmax, pos
Mmax, neg
=
i
i
kips-ft,, xmax, pos
=
kips-ft, Xmax, neg=
i
i
ft
ft
Transcribed Image Text:Use your shear-force and bending-moment diagrams to determine the maximum positive bending moment, Mmax, pos, the maximum negative bending moment, Mmax, neg, and their respective locations, Xmax, pos and Xmax, neg. Use the bending-moment sign convention detailed in Section 7.2. The maximum negative bending moment is the negative moment with the largest absolute value. Enter the maximum negative bending moment as a negative value. Answers: Mmax, pos Mmax, neg = i i kips-ft,, xmax, pos = kips-ft, Xmax, neg= i i ft ft
For the simply supported beam subjected to the loading shown, derive equations for the shear force V and the bending moment M
for any location in the beam. (Place the origin at point A.) Let w = 20.0 kips/ft, a=6.0 ft, and b=20.5 ft. Construct the shear-force
and bending-moment diagrams on paper and use the results to answer the questions in the subsequent parts of this GO exercise.
y
A
a
A
a
O
B₁
B
Calculate the reaction forces By and Cy acting on the beam. Positive values for the reactions are indicated by the directions of the
red arrows shown on the free-body diagram below. (Note: Since Bx = 0, it has been omitted from the free-body diagram.)
W
B
b
W
b
C
C₂
X
Transcribed Image Text:For the simply supported beam subjected to the loading shown, derive equations for the shear force V and the bending moment M for any location in the beam. (Place the origin at point A.) Let w = 20.0 kips/ft, a=6.0 ft, and b=20.5 ft. Construct the shear-force and bending-moment diagrams on paper and use the results to answer the questions in the subsequent parts of this GO exercise. y A a A a O B₁ B Calculate the reaction forces By and Cy acting on the beam. Positive values for the reactions are indicated by the directions of the red arrows shown on the free-body diagram below. (Note: Since Bx = 0, it has been omitted from the free-body diagram.) W B b W b C C₂ X
Expert Solution
steps

Step by step

Solved in 6 steps with 8 images

Blurred answer
Knowledge Booster
Bending
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Recommended textbooks for you
International Edition---engineering Mechanics: St…
International Edition---engineering Mechanics: St…
Mechanical Engineering
ISBN:
9781305501607
Author:
Andrew Pytel And Jaan Kiusalaas
Publisher:
CENGAGE L